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Abstract What mechanisms support our ability to estimate durations on the order of minutes?

Behavioral studies in humans have shown that changes in contextual features lead to

overestimation of past durations. Based on evidence that the medial temporal lobes and prefrontal

cortex represent contextual features, we related the degree of fMRI pattern change in these

regions with people’s subsequent duration estimates. After listening to a radio story in the scanner,

participants were asked how much time had elapsed between pairs of clips from the story. Our ROI

analyses found that duration estimates were correlated with the neural pattern distance between

two clips at encoding in the right entorhinal cortex. Moreover, whole-brain searchlight analyses

revealed a cluster spanning the right anterior temporal lobe. Our findings provide convergent

support for the hypothesis that retrospective time judgments are driven by ’drift’ in contextual

representations supported by these regions.

DOI: 10.7554/eLife.16070.001

Introduction
Imagine that you are at the bus stop when you run into a colleague and the two of you become

engrossed in a conversation about memory research. After a few minutes, you realize that the bus

still has not arrived. Without looking at your watch, you have some sense of how long you have been

waiting. Where does this intuition come from?

Estimation of durations lasting a few seconds has been probed in the neuroimaging, neuropsy-

chology and neuropharmacology literatures (see Wittmann, 2013, for a review). On the other hand,

the neural mechanisms underlying time perception on the scale of minutes have remained unex-

plored. This is particularly true of retrospective judgments, where individuals experience an interval

without paying attention to time and must subsequently estimate the interval’s duration. In such

cases, individuals must rely on information stored in memory to estimate duration. How is this

accomplished?

Memory scholars have long posited that the same contextual cues that help us to retrieve an item

from memory can also help us determine its recency. According to extant theories of context and

memory (see Manning et al., 2014, for a review), mental context refers to aspects of our mental

state that tend to persist over a relatively long time scale; this encompasses our representation of

slowly-changing aspects of the external world (e.g., what room we are in) as well as other slowly-

changing aspects of our internal mental state (e.g., our current plans). Crucially, these theories posit

that slowly-changing contextual features can be episodically associated with more quickly-changing
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aspects of the world (e.g., stimuli that appear at a particular moment in time; Mensink and Raaij-

makers, 1988; Howard and Kahana, 2002).

Bower (1972) first proposed that we could determine how long ago an item occurred by com-

paring our current context with the context associated with the remembered item. The similarity of

these two context representations would reflect their temporal distance, with more similar represen-

tations associated with events that happened closer together in time. Thus, a slowly varying mental

context could serve as a temporal tag (Polyn and Kahana, 2008). In parallel, researchers in the

domain of retrospective time estimation have shown that the degree of context change is a better

predictor of duration judgments than alternative explanations, such as the number of items remem-

bered from the interval (Block and Reed, 1978; Block, 1990, 1992). Indeed, changes in task proc-

essing (Block and Reed, 1978; Sahakyan and Smith, 2014), environmental context (Block, 1982),

and emotions (Pollatos et al., 2014), as well as event boundaries (Poynter, 1983; Zakay et al.,

1994; Faber and Gennari, 2015), lead to overestimation of past durations.

In our study, we set out to obtain neural evidence in support of the hypothesis that mental con-

text change drives duration estimates. Specifically, we hypothesized that, in brain regions represent-

ing mental context, the degree of neural pattern change between two events (operationalized as

change in multi-voxel patterns of fMRI activity) should predict participants’ estimates of how much

time passed between those events.

Extensive prior work has implicated the medial temporal lobe (MTL) and lateral prefrontal cortex

(PFC) in representing contextual information (Polyn and Kahana, 2008; for reviews of MTL contribu-

tions to representing context, see Eichenbaum et al., 2007, and Ritchey and Ranganath, 2012; for

related computational modeling work, see Howard and Eichenbaum, 2013). In keeping with our

hypothesis, multiple studies have obtained evidence linking neural pattern change in these regions

eLife digest How do humans judge how much time has passed during daily life, such as when

waiting for the bus? Psychology studies have shown that people remember events to have lasted

longer when more changes occurred during that time period. These changes can occur either in the

environment (such as changes in location) or in the individual’s internal state (such as changes in

goals and emotions).

Brain activity changes from moment to moment. Lositsky et al. hypothesized that when patterns

of activity in a person’s brain change a lot across an interval of time, that person will judge that a

long time has passed. On the other hand, if brain activity changes less over that interval, individuals

will judge that less time has passed.

Some regions of the brain are sensitive to information that unfolds over several minutes; many of

these regions are vital for forming memories of episodes from our lives. Using a technique called

functional magnetic resonance imaging (fMRI), Lositsky et al. specifically looked at the activity of

these regions while volunteers listened to a 25-minute radio drama. Afterwards, the volunteers

listened to clips from different events in the story and judged how much time passed between those

events.

Even though each pair of audio clips occurred exactly two minutes apart in the original story,

people’s time judgments were strongly influenced by how many scene changes happened in the

story between the two clips. In a part of the brain called the right anterior temporal lobe – and

especially in a region of it called the entorhinal cortex – Lositsky et al. found that brain activity

changed more when audio clips were judged to be further apart in time. Activity in this region

fluctuated more slowly overall than in the rest of the brain. This could mean that it combines sensory

information (about images, sounds, smells and so on) across minutes of time, in order to form a

representation of the current situation.

Future research could focus on several unanswered questions. Exactly which environmental and

internal changes influence our perception of time? What form does this information take in the

entorhinal cortex? Studies show that the entorhinal cortex contains “grid cells” that track our

location in space. Could these cells also help judge the passage of time?

DOI: 10.7554/eLife.16070.002
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to temporal memory judgments. Manns et al. (2007) recorded from rat hippocampus during an

odor memory task; they found that greater change in hippocampal activity patterns between two

stimuli predicted better memory for the order in which the stimuli occurred. In the human neuroim-

aging literature, Jenkins and Ranganath (2010) found that the degree to which activity patterns in

rostrolateral prefrontal cortex changed during the encoding of a stimulus predicted better memory

for the temporal position of that stimulus in the experiment. Jenkins and Ranganath (2016) also

showed that greater pattern distance between two stimuli at encoding in the hippocampus, medial

and anterior prefrontal cortex predicted better order memory. Only one study has directly related

neural pattern drift to judgments of elapsed time in humans: Ezzyat and Davachi (2014) found that

patterns of fMRI activity in left hippocampus were more similar for pairs of stimuli that were later

estimated to have occurred closer together in time, despite equivalent time passage between all

pairs (a little less than a minute).

While the Ezzyat and Davachi (2014) study provides support for our hypothesis, it has some limi-

tations. First, in Ezzyat and Davachi (2014), participants estimated the temporal distance of stimuli

that were linked to their contexts in an artificial way (by placing pictures of objects or famous faces

on unrelated scene backgrounds); it is unclear whether these results will generalize to more naturalis-

tic situations where events are linked through a narrative. Second, since participants performed the

temporal memory test after each encoding run, they were not entirely naı̈ve to the manipulation.

Knowing that they would have to estimate durations between stimuli could have changed partici-

pants’ strategy and enhanced their attention to time (for evidence that estimating time prospectively

engages different mechanisms, see Hicks et al., 1976, and Zakay and Block, 2004). In the current

study, we sought to address the above issues by eliciting temporal distance judgments for pairs of

events that had occurred several minutes apart and that were embedded in the context of a rich nat-

uralistic story; participants listened to the entire story before being informed about the temporal

judgment task.

Based on the studies reviewed above, we predicted that neural pattern drift in medial temporal

and lateral prefrontal regions might support duration estimation. In our study, we examined these

regions of interest (ROIs), as well as a broader set of regions that have been implicated in fMRI stud-

ies of time estimation, including the inferior parietal cortex, putamen, insula and frontal operculum

(see Box 1 for a review). In addition to the ROI analysis, which examined activity patterns in masks

that were anatomically defined, we performed a searchlight analysis, which examined activity pat-

terns within small cubes over the whole brain.

Box 1. fMRI literature on prospective time estimation.

As noted in the main text, only one study (Ezzyat and Davachi, 2014) has used fMRI to study

retrospective estimation of time intervals lasting more than a few seconds. The vast majority of

fMRI studies of time estimation have used prospective tasks, in which participants are asked to

deliberately track the duration of a short stimulus or compare the duration of two stimuli. Such

studies have repeatedly shown that activity in the putamen, insula, inferior frontal cortex (frontal

operculum), and inferior parietal cortex increases as participants pay more attention to the dura-

tion of stimuli, as opposed to another time-varying attribute (Coull, 2004; Coull et al., 2004;

Livesey et al., 2007; Wiener et al., 2010; Wittmann et al., 2010). Dirnberger et al. (2012)

showed that greater activity in the putamen and insula during encoding of aversive emotional

pictures predicted better subsequent memory for those pictures, but only when their duration

was overestimated relative to neutral images. This suggests that the putamen and insula might

mediate the relationship between enhanced processing for emotional stimuli and subjective

time dilation. Given the established role of these regions in time processing (albeit of a different

sort), we included these regions in the set of a priori ROIs for our main fMRI analysis.

DOI: 10.7554/eLife.16070.003
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Participants were scanned while they listened to a 25-minute science fiction radio story. Outside

the scanner, they were surprised with a time perception test, in which they had to estimate how

much time had passed between pairs of auditory clips from the story. Controlling for objective time,

we found that the degree of neural pattern distance between two clips at the time of encoding pre-

dicted how much time an individual would later estimate passed between them. The effect was sig-

nificant in the right entorhinal cortex ROI. Extending the anatomical analysis to all masks in cortex

revealed an additional effect in the left caudal anterior cingulate cortex (ACC). Moreover, whole-

brain searchlight analyses yielded significant clusters spanning the right anterior temporal lobe. Our

results suggest that patterns of neural activity in these regions may carry contextual information that

helps us make retrospective time judgments on the order of minutes.

Results

Behavioral results
Participants were sensitive to the duration of story intervals
Figure 1 shows the experimental design, which consisted of an fMRI session, followed immediately

by a behavioral session. After listening to a 25-min radio story in the scanner, participants were

asked how much time had passed between 43 pairs of clips from the story. In actuality, 24 of the clip

pairs had been presented 2 minutes apart in the story, while 19 of the clip pairs had been presented

6 minutes apart in the story (participants were not informed of this). Participants were able to esti-

mate the duration of experienced minutes-long intervals far above chance, albeit with substantial

intra- and inter-individual variability. On average, across participants, the 6-min intervals

(M=5.70 min, SD=3.06) were judged to be significantly longer than the 2-min intervals (M=3.69 min,

SD=1.96), t(17) = 5.20, p<10-4 (see Figure 2A).

Figure 1. Experimental design.

DOI: 10.7554/eLife.16070.004
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As described in the Materials and methods (see Removing low-confidence intervals), participants

also provided confidence ratings reflecting their certainty about each clip’s place in the story. Based

on this measure, we grouped each participant’s duration estimates into high-confidence and low-

confidence intervals. To verify that participants were better at distinguishing 6-min intervals from 2-

min intervals when they were confident, we calculated the difference between the mean duration

estimates for 6-min intervals and the mean duration estimates for 2-min intervals for every partici-

pant. The difference score was significantly higher for high-confidence intervals (M=2.43, SD=1.82)

than for all intervals (M=2.01, SD=1.64), t(17)=2.33, p=0.0324. Thus, participants were significantly

more accurate at estimating an interval’s duration when they confidently remembered the temporal

position of both clips delimiting that interval in the story (see Figure 2B).

For a given interval duration, some intervals were consistently judged to be longer than other

intervals across participants, although the actual amount of elapsed time was held constant. To test

the reliability of duration estimates across participants, we split the subjects randomly into two

groups, averaged the duration estimates within each group, and correlated the two averages with

each other. We repeated this procedure 1000 times to ensure that we sampled a variety of group

splits. The average correlation between the two groups was 0.64 (SD=0.09) for 2-min intervals and

0.54 (SD=0.15) for 6-min intervals (see Figure 2—figure supplement 1). This analysis suggests that

features of the story made some intervals appear consistently shorter and other intervals appear

consistently longer across participants.

Figure 2. Mean duration estimates for all intervals (A) and confident intervals (B) as a function of their actual duration. Each blue circle represents the

mean duration estimate for an individual participant within a given interval duration (2 or 6 min). The blue bar heights represent the global means for 2

and 6-min intervals across intervals and participants.

DOI: 10.7554/eLife.16070.005

The following source data and figure supplement are available for figure 2:

Source data 1. Duration estimates and confidence ratings for all participants and intervals.

DOI: 10.7554/eLife.16070.006

Figure supplement 1. Reliability of duration estimates across participants.

DOI: 10.7554/eLife.16070.007
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Duration estimates are influenced by memory of the story
We found that participants estimated six-minute intervals to be significantly longer than two-minute

intervals (Figure 2), and that some intervals in the story tended to be systematically over-estimated

by participants (Figure 2—figure supplement 1). However, it is possible that participants could

judge the temporal distance between two clips purely based on the similarity between them (e.g.

Are the same characters speaking? Is the background music the same? Is the topic of conversation

similar?).

To ensure that participants were using their memory of the story to judge temporal distance, we

ran a control experiment in which 17 participants who had never heard the story were given the

exact same memory test. They were asked to try to estimate the amount of time that had elapsed

between each pair of clips during the original telling of the story. During debriefing, participants

reported making duration estimates based on the perceptual and semantic similarity between the

two clips (e.g., which character voices were present, which background music was playing, the topic

of conversation).

We found that naı̈ve participants estimated 6-min intervals (M=6.21 min, SD=1.91) to be longer

than 2-min intervals (M=5.63 min, SD=1.74; t(16)=2.62, p=0.019), suggesting that the similarity

between two clips carried some information about the temporal distance between them. However,

naı̈ve participants were significantly less accurate at distinguishing 6-min intervals from 2-min inter-

vals than our original participants who had heard the story. To quantify this, we calculated the differ-

ence between the mean duration estimates for 6-min intervals and the mean duration estimates for

2-min intervals for every participant (exactly as above). The difference score was significantly higher

for our original participants (M=2.01 min, SD=1.64 min) than for naı̈ve participants (M=0.59 min,

SD=0.91 min), t(26.86)=�3.22, p<0.005. Thus, having memory of the story enabled our participants

to estimate durations with significantly higher accuracy.

We hypothesized that both our original participants and the naı̈ve participants would use consis-

tent strategies to estimate the temporal distance between two clips, but that these strategies would

differ across groups. If this is the case, duration estimates should be more correlated across partici-

pants within groups than across participants between groups. The correlation in duration estimates

across participants within a group (see Materials and methods) in duration estimates was as strong

for naı̈ve participants (M=0.43, SD=0.18, 95% CI [0.40, 0.56]) as for our original participants

(M=0.43, SD=0.25, 95% CI=[0.37, 0.58]), suggesting that both groups used a consistent strategy to

estimate the distance between two clips. When we correlated duration estimates from our original

group of participants with those of our naı̈ve participants, we found that the between-group correla-

tions (M=0.18, SD=0.22, 95% CI=[0.04, 0.28]) were significantly above 0, suggesting that a compo-

nent of the original duration estimates was influenced by the similarity in content between clips.

However, the between-group correlations were significantly lower than the within-group correlations

(p<0.0001, as assessed by a permutation test described in the Materials and methods). In other

words, there is a reliable component of our original participants’ behavior that cannot be captured

by accounting for the perceptual and semantic similarity between clips. In summary, having memory

of the story induced a qualitatively different pattern of behavior and produced significantly more

accurate duration estimates.

Correlation between number of event boundaries and duration estimates
To gain additional evidence that duration estimates were related to contextual change, we looked

at the correlation between estimated duration and the number of event boundaries in the interval

between the clips. The number of intervening event boundaries can be viewed as a proxy for contex-

tual change, insofar as event boundaries often encompass changes in scene, characters and conver-

sation topic (Kurby and Zacks, 2008; Zacks et al., 2009). As reviewed in the Introduction,

numerous studies have found a relationship between changes in contextual features during an inter-

val and duration estimates for that interval.

A separate group of participants (n=9) listened to the story and was asked to press a button

every time they felt an event boundary was occurring. These data were then averaged across partici-

pants to obtain the mean number of event boundaries inside each two-minute interval. We found

that the mean number of boundaries in an interval was significantly correlated with the mean dura-

tion estimates from our original experiment (r = 0.49, 95% CI [0.27, 0.57]; Figure 3). This suggests
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that our participants’ retrospective duration estimates were influenced by the number of contextual

changes that had occurred during an interval.

However, it is important to note that the number of event boundaries between two clips also

influences the perceptual and semantic similarity between them (e.g., clips from the same scene

might sound more similar than clips from different scenes). Thus, our participants’ duration estimates

could correlate with the number of event boundaries, even if they were basing their estimates purely

on the perceptual similarity between clips. To explore this possibility, we tested whether the number

of event boundaries would correlate with duration estimates from naı̈ve participants, who could only

judge temporal distance based on the similarity between clips, given that they had never heard the

story.

Importantly, we found that the number of event boundaries in an interval did not significantly cor-

relate with duration estimates of naı̈ve participants (r=0.09, 95% CI [�0.05, 0.21]; Figure 3). Of

course, we cannot definitively prove the null hypothesis that naı̈ve duration estimates do not corre-

late with the number of event boundaries. However, the correlation between the number of bound-

aries and duration estimates was significantly higher for our original participants than for naı̈ve

participants (rdiff=0.40, 95% CI [0.15 0.56]). In other words, duration estimates from participants who

remembered the story were significantly more correlated with the number of contextual changes

between two clips than duration estimates from participants who were judging temporal distance

based merely on the similarity between the two clips. This suggests that the number of event bound-

aries carries information about temporal context that is not contained within the clips alone, and

Figure 3. Mean duration estimates for 2-minute intervals as a function of the number of event boundaries in each interval. The number of event

boundaries in an interval predicted retrospective duration estimates in our original experiment (A), but did not significantly predict duration estimates

of naı̈ve participants (B) who had never heard the story. This suggests that the number of contextual changes between two clips influenced temporal

distance judgments significantly more when the content of the story between the two clips could be recalled.

DOI: 10.7554/eLife.16070.008

The following source data is available for figure 3:

Source data 1. Mean number of event boundaries and mean duration estimates from both original and naı̈ve participants.

DOI: 10.7554/eLife.16070.009

Source data 2. Duration estimates from the naı̈ve experiment, including both 2 and 6-min intervals.

DOI: 10.7554/eLife.16070.010
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that our original participants’ estimates were influenced by their memory of this contextual

information.

fMRI results
We tested whether BOLD pattern change between two clips correlated with temporal distance esti-

mates, using both ROI and whole-brain searchlight analyses. Each type of analysis was performed

both within-participants across intervals and within-intervals across participants.

Figure 4. Correlating pattern distance with duration estimates within participants. For each ROI in each participant, the pattern distance between each

pair of clips at encoding was correlated with the participant’s retrospective duration estimate (A–B). The top panel (A) shows two example intervals. The

neural distance (1-Pearson’s r) between clips 2 and 4 (second interval) is greater than the neural distance between clips 1 and 3 (first interval), as is the

subjective duration estimate. (B) shows the correlation between neural distance and duration estimates in a hypothetical region and participant. (C) We

used a permutation test to generate 10,000 surrogate pattern distance vectors (see Figure 4—figure supplement 1), which we then used to obtain a

distribution of null correlations between neural distances and duration estimates. For each ROI in each participant, we calculated the z-scored

correlation value, which reflects the strength of the empirical correlation relative to the distribution of null correlations. For each ROI, we performed a

random effects t-test to assess whether the z-score was reliably positive across participants. P-values from this t-test were then subjected to multiple

comparisons correction using False Discovery Rate (FDR).

DOI: 10.7554/eLife.16070.011

The following figure supplement is available for figure 4:

Figure supplement 1. Permutation test assessing the temporal specificity of correlations between pattern change and behavior.

DOI: 10.7554/eLife.16070.012
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In the within-participant analysis, we correlated each participant’s duration estimates with that

participant’s neural pattern distances (see Within-Participant Correlation between Pattern Change

and Duration Estimates and Within-Participant Whole-brain Searchlight). In the within-interval analy-

sis, we correlated individual differences in subjective duration for a given interval with individual dif-

ferences in neural pattern distance for that interval (see Within-Interval Correlation between Pattern

Change and Duration Estimates and Within-Interval Whole-brain Searchlight). The two versions of

each analysis were performed in order to rule out the possibility that our effects were driven either

by participant or interval random effects. In particular, we were concerned that correlations between

neural pattern distance and behavior could reflect sensitivity to perceptual or semantic features of

the clips (i.e., clip pairs with similar perceptual/semantic features might be associated with shorter

duration estimates and greater neural similarity, relative to clip pairs with more dissimilar features).

The within-interval analysis addresses this concern by holding clip identity constant.

Next, we fit a mixed-effects model for each ROI (see Mixed-Effects Model Accounting for Naı̈ve

Duration Estimates), in which we estimated whether pattern distance in that ROI could predict dura-

tion estimates, even when accounting for participant random effects, item (interval) random effects,

as well as naı̈ve duration estimates (which are a proxy for the perceptual and semantic similarity

between two clips, see Behavioral results).

Finally, we discuss the brain regions that showed significant effects across all analyses (see Com-

paring Results from ROI and Searchlight Analyses).

As noted in the Materials and methods, the ROI and searchlight analyses were conducted only on

high-confidence two-minute intervals. Six-minute intervals were excluded from the fMRI analysis,

since we could not successfully dissociate neural pattern change at this timescale from low-frequency

scanner noise (see Methodological challenges with analyzing pattern distance over long time scales

in the Materials and methods).

Anatomical ROI analyses
We first tested whether pattern change in regions suggested by the literature to be important for

representing temporal context (see ROI Selection) correlated with retrospective duration estimates.

Anatomical ROIs were derived from FreeSurfer cortical parcellation (Desikan et al., 2006) and from

a probabilistic MTL atlas (Hindy and Turk-Browne, 2015).

Within-participant correlation between pattern change and duration
estimates
The within-participant analysis procedure is outlined in Figure 4. We calculated the correlation

between neural pattern distance and duration estimates within participants (Figure 4A) in each of

the 32 ROIs shown in Figure 5. To assess the likelihood of obtaining a correlation of that magnitude

by chance, we used a phase randomization procedure (described in Materials and methods) to

obtain 10,000 null correlations for each ROI in every participant. This enabled us to calculate a

Z-value for every ROI in every participant, which reflects the strength of the actual correlation

between pattern distance and duration estimates relative to the distribution of null correlations

(Figure 4C). Here we report the regions whose Z-values were consistently positive across partici-

pants, corrected for multiple comparisons using False Discovery Rate (Benjamini et al., 2006).

Out of the regions selected a priori, the right entorhinal cortex and right pars orbitalis showed a

significant positive correlation between pattern change and duration estimates for high-confidence

2-minute intervals (q<0.05). Figure 5 shows the mean Z-values across participants for all a priori

ROIs (16 in each hemisphere), including lateral prefrontal regions (top panel A), medial temporal

lobe regions, insula, putamen, and inferior parietal cortex (bottom panel B). While a large number of

these regions had Z-values that were positive across participants (e.g., left hippocampus, left ento-

rhinal cortex, right perirhinal cortex, right amygdala, bilateral insula, and right caudal middle frontal

cortex, p<0.05 uncorrected), we report only those that survived FDR correction.

As part of an exploratory search, we also performed this analysis on the other brain regions

derived from FreeSurfer cortical parcellation. This included the 16 ROIs mentioned above, in addi-

tion to regions in the occipital lobe, parietal lobe, medial prefrontal cortex, lateral temporal lobe,

basal ganglia, thalamus and brainstem (the complete list of regions can be found in Figure 5—

source data 1). Out of the 84 regions tested (42 in each hemisphere), the right entorhinal cortex,

right pars orbitalis, and left caudal anterior cingulate cortex (ACC) showed significant positive
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Figure 5. Within-participant ROI analysis: mean Z-values (across all 18 participants) of correlations between pattern distance and duration estimates for

the 16 a priori ROIs. Z-values were obtained from the phase randomization procedure and reflect the strength of the empirical correlation relative to

the distribution of null correlations. Error bars represent standard errors of the mean. The blue dots over the right entorhinal cortex and right pars

orbitalis indicate that these ROIs survived FDR correction at q<0.05.

Figure 5 continued on next page
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correlations between pattern change and duration estimates (q<0.1). This suggests that the right

entorhinal cortex and right pars orbitalis, which were part of our list of a priori ROIs, contained

effects that were apparent even after whole-brain correction, and reveals an additional effect in the

left caudal ACC that we had not anticipated. Figure 5—figure supplement 1 displays the locations

of these three regions in MNI space.

Within-interval correlation between pattern change and duration estimates
Above, in the within-participants analysis, we found that the neural pattern distance between two

clips at encoding was correlated with retrospective duration judgments in the right entorhinal cortex,

right pars orbitalis and left caudal ACC. However, in the Behavioral results, we found that the per-

ceptual and semantic similarity between two clips could explain some of the variance in subjective

duration across intervals, even though it could not explain all the variance. Thus, it is possible that

neural pattern change in the regions we found correlates with the component of duration estimates

that is driven by perceptual and semantic content, rather than the component that is driven by

abstract, slowly varying contextual features.

To rule out this concern, we performed a within-interval (across participants) version of the ROI

analysis. For each ROI, we correlated (1) duration estimates for a given interval across participants

with (2) the neural pattern distances for that interval across participants; results were then aggre-

gated across all 2-min intervals. Rather than capturing variance within an individual across intervals

of the story, this analysis captures variance across individuals for a given interval of the story. By per-

forming the correlation within a given interval, we hold constant the perceptual and semantic con-

tent of the two clips and only leverage individual differences in how long the interval appeared

retrospectively.

As described in the Materials and methods, a permutation test was used to assess the statistical

significance of each correlation. Duration estimates were scrambled across participants 10,000 times

to obtain a distribution of null correlations for every interval in every ROI. This enabled us to calcu-

late a Z-value, which reflects the strength of the actual correlation between pattern distance and

duration estimates relative to the distribution of null correlations. Finally, a right-tailed t-test was

performed to assess whether the Z-values for a region were reliably above 0 across intervals. The

p-values from this t-test were subjected to multiple comparisons correction using FDR.

Out of the regions selected a priori, the right entorhinal cortex, right amygdala, and right insula

showed a significant positive correlation between pattern change and duration estimates for high-

confidence 2-minute intervals (q<0.05). Figure 6 shows the mean Z-values across intervals for all a

priori ROIs (16 in each hemisphere).

Extending this analysis to the whole brain (same anatomical masks as in Figure 5—source data 1)

revealed only the right entorhinal cortex (q<0.05), suggesting that the effect in this region was

strong enough to survive whole-brain correction.

Importantly, the right entorhinal cortex is the only region with significant effects in both the

within-interval analysis (Cohen’s d = 0.83) and the within-participant analysis (Cohen’s d = 0.79). If

neural pattern distance between two clips in entorhinal cortex were driven solely by changes in clip

content, we would have expected the correlation with duration estimates to be larger for the within-

participant analysis (where story content differed across intervals) than for the within-interval analysis

(where story content is held constant). The fact that the effect sizes are similar shows that perceptual

or semantic differences in content between the two clips are not the main factor driving the correla-

tion between duration estimates and neural pattern change in this region.

Figure 5 continued

DOI: 10.7554/eLife.16070.013

The following source data and figure supplement are available for figure 5:

Source data 1. Within-participant analysis Z-values and Pearson’s r values for all participants and grey matter regions derived from FreeSurfer segmen-

tation and the probabilistic MTL atlas.

DOI: 10.7554/eLife.16070.014

Figure supplement 1. Anatomical ROIs that showed a significant correlation between pattern change and duration estimates within participants, after

whole-brain FDR correction.

DOI: 10.7554/eLife.16070.015
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Figure 6. Within-interval ROI analysis: mean Z-values (across all 2-min intervals) of correlations between pattern distance and duration estimates for the

16 a priori ROIs. Error bars represent standard errors of the mean. Correlations between pattern change and duration estimates were performed across

participants, separately for each interval.

DOI: 10.7554/eLife.16070.016

Figure 6 continued on next page
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Mixed-effects model accounting for naı̈ve duration estimates
We analyzed our data using a hierarchical linear regression model (Gelman and Hill, 2006; see

Materials and methods for additional detail). This analysis estimates population-level effects of inter-

est, while controlling for the possibility of individual variability between subjects and between clip

pairs. In other words, this approach leverages the power of the within-interval analysis to control for

the objective content similarity between two clips, while also taking into account variability in the

effect across participants. In addition, we included the mean duration estimates from our naı̈ve par-

ticipants as a covariate in the model (see Behavioral results). Since naı̈ve participants had estimated

the temporal distance between each pair of clips without hearing the story, this covariate is a further

control for the inherent guessability of the temporal distance between two clips. Both controls

strengthen our interpretation that the remaining effect of neural pattern distance on duration esti-

mates is driven by the contextual dissimilarity (rather than perceptual or content dissimilarity)

between two clips.

For each anatomical region derived from FreeSurfer and MTL segmentation (42 in each hemi-

sphere), we fit a model where duration estimates were predicted by naı̈ve duration estimates as well

Figure 7. Parameter estimates and 95% confidence intervals for the fixed effect of neural pattern distance on duration estimates. We also included the

right amygdala and right superior temporal cortex in the figure, because their confidence intervals did not include 0 when a slightly less conservative

fitting procedure was used (see Figure 7—source data 1 and Materials and methods).

DOI: 10.7554/eLife.16070.018

The following source data is available for figure 7:

Source data 1. Parameter estimates (betas) and 95% confidence intervals for the fixed effects of neural pattern distance on duration estimates for all 84

anatomical regions.

DOI: 10.7554/eLife.16070.019
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as the neural pattern distance in that region (see Materials and methods for the complete formula).

We then computed 95% confidence intervals of the fixed-effects parameter estimates using the

asymptotic Gaussian approximation (see Materials and methods).

The fixed effect of naı̈ve estimates was positive in all models and its confidence intervals did not

include zero in 80% of the models. This reproduced our finding that naı̈ve duration estimates are

correlated with the original duration estimates (see Behavioral results), suggesting that interval dura-

tions are partially guessable based on the similarity between clips. However, even under this control,

the fixed effect of neural pattern distance in left caudal ACC and right entorhinal cortex exhibited

confidence intervals that did not include zero (Figure 7). Figure 7—source data 1 contains the

parameter estimates and 95% confidence intervals for all 84 anatomical regions.

Importantly, including the naı̈ve duration estimates as a covariate in the model did not signifi-

cantly weaken the relationship between neural pattern distance and duration estimates in these

regions (though the effects were slightly lower numerically). Figure 7 shows in green the 95% confi-

dence intervals for the same ROIs when naı̈ve duration estimates are excluded from the model.

Whole-brain searchlights
As with the Anatomical ROI analyses, both within-participant and within-interval analyses were per-

formed for the Whole-Brain Searchlight analyses, in order to rule out the possibility that our effects

were driven either by participant or interval random effects.

Within-participant whole-brain searchlight
We ran a cubic searchlight with 3x3x3 (27) voxels (972 mm3) through the entire brain and tested for

a correlation between pattern change and duration estimates in each searchlight. The same phase-

randomization procedure that was used for the within-participant anatomical ROI analysis was also

applied here; this procedure generates Z-values that reflect how likely we are to get this strong of a

correlation by chance, given the frequency spectrum of the fMRI data. When excluding low-confi-

dence intervals, we found a significant cluster in the right anterior temporal lobe (p=0.034, FWE-cor-

rected; Center of Gravity MNI coordinates (x, y, z) in mm: [45.6, �5.53, �21.7]; cluster size=572

voxels in 3 mm MNI space). Small parts of the cluster also extended to the right posterior insula and

right putamen (see Figure 8).

Within-interval Whole-brain searchlight
We also ran a searchlight version of the within-interval analysis. In order to match searchlights across

participants, functional data were transformed to 3 mm MNI space. Since this transformation

approximately doubles the number of brain voxels, we ran cubic searchlights of radius 2 with 5x5x5

(125) voxels through the entire brain.

As with the ROI analysis, this analysis was performed on high-confidence duration estimates. For

each interval, we only included participants who had confidently recollected the temporal position of

the two clips delimiting that interval.

To assess the significance of each correlation score, we used the same permutation test as for the

ROI analysis. Duration estimates were scrambled across participants 10,000 times to obtain a distri-

bution of null correlations, and Z-values were calculated for each interval. We thus obtained a brain

map of Z-values for each of the 24 intervals, and FSL’s randomise function was used to control the

family-wise error rate, as above.

Similarly to the within-participant searchlight, we found a significant cluster in the right anterior

temporal lobe (p=0.019, FWE-corrected; Center of Gravity MNI coordinates (x, y, z) in mm: [32.1,

�10.2, �18.7]; cluster size=535 voxels in 3 mm MNI space). The cluster extended from the right par-

ahippocampal gyrus, hippocampus and amygdala medially to the middle temporal gyrus and tempo-

ral pole laterally (see Figure 9).

Comparing results from ROI and searchlight analyses
The within-participant ROI analysis revealed significant effects in the right entorhinal cortex, right

pars orbitalis and left caudal ACC. The within-interval ROI analysis revealed significant effects in the

right entorhinal cortex, right amygdala and right insula. The mixed-effects ROI analysis showed that

the right entorhinal cortex and left caudal ACC had confidence intervals above 0, even when naı̈ve
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duration estimates were accounted for. Both the within-participant and within-interval searchlights

revealed significant clusters in the right anterior temporal lobe. Figure 10 enables a comparison of

the two searchlight analyses; the right entorhinal cortex ROI that emerged in all three ROI analyses

is also overlaid. The within-interval searchlight cluster was located more medially than the within-par-

ticipant searchlight cluster, though the two overlapped in the right amygdala, right temporal pole,

and the cerebral white matter of the right anterior temporal lobe. Moreover, the within-interval

searchlight cluster overlapped with the right entorhinal cortex ROI (see green voxels, Figure 10).

The difference in the set of regions that passed the significance threshold between the ROI and

searchlight analyses is very likely due to the difference in shapes between the searchlight cube and

the anatomical masks. Following the anatomy is particularly important for small, elongated regions

like entorhinal cortex and caudal ACC, which are unlikely to be perfectly aligned across participants.

For the searchlight analyses, the data needed to be transformed to MNI space in order to aggregate

the results; consequently, imperfections in alignment can reduce the significance of searchlight

results in these regions. On the other hand, anatomical ROI analyses were performed entirely in

native space, making them more suitable for idiosyncratically shaped regions.

Figure 8. Results of within-participant whole-brain searchlight. Voxels in orange represent centers of searchlights that exhibited significant correlations

between pattern change and duration estimates within participants across intervals (p<0.05, FWE). The significant cluster had peak MNI coordinates (in

mm): x = 45.6, y = -5.53, z = -21.7.

DOI: 10.7554/eLife.16070.020
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Patterns of activity in entorhinal cortex change slowly over time
To further probe the idea that the regions we found represent slowly changing contextual features,

we assessed whether their patterns of activity change slowly over time relative to the rest of the

brain. We focused this analysis on the right entorhinal cortex and left caudal ACC, both of which

were significant in the mixed-effects ROI analysis.

We quantified the speed of BOLD signal change in three different ways: (1) a multivariate proce-

dure, (2) a multivariate procedure in which we regressed out ROI size, and (3) a univariate procedure.

(1) For the multivariate procedure, we obtained the mean auto-correlation function of the pattern in

every region, and took the full-width half-maximum (FWHM) of this function as a measure of how

slowly the pattern moves away from itself on average (see Materials and methods). (2) Since this

analysis was performed on anatomical masks derived from FreeSurfer parcellation, they varied sub-

stantially in size. To ensure that differences in the speed of pattern change were not due to differen-

ces in ROI size, we also performed the multivariate procedure after regressing the vector of ROI

sizes (number of voxels) out of the vector of FWHM values for each participant. (3) Finally, we per-

formed the above analysis for every voxel individually. Rather than calculating the mean auto-correla-

tion function of the pattern in every region, we calculated the auto-correlation function of every

voxel’s time course and averaged the auto-correlation functions across all the voxels in a given

Figure 9. Results of within-interval whole-brain searchlight. Voxels in orange represent centers of searchlights that exhibited significant correlations

between pattern change and duration estimates across participants (p<0.05, FWE). The significant cluster had center of gravity MNI coordinates (in

mm): x = 32.1, y = �10.2, z = �18.7.

DOI: 10.7554/eLife.16070.021
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region. The FWHM was then computed for this mean auto-correlation derived from individual voxel

time courses.

Using these three procedures, we compared the FWHMs in the right entorhinal cortex and left

caudal ACC with FWHMs in three regions known to be involved in auditory and language process-

ing: the right transverse temporal cortex, which encompasses primary auditory cortex

(Destrieux et al., 2010; Shapleske et al., 1999), the right banks of the superior temporal sulcus and

the right superior temporal cortex, which are involved in auditory processing and the early cortical

stages of speech perception (Binder et al., 2000; Hickok and Poeppel, 2004).

Table 1 shows the FWHMs in the above regions derived using the three procedures, as well as

the ranking of the right entorhinal cortex and left caudal ACC mean FWHMs relative to all the other

masks in the brain (84 in total).

Across all three procedures, a right-tailed Wilcoxon signed-rank test indicated that the FWHMs in

the right entorhinal cortex were consistently larger across participants than the FWHMs in the right

transverse temporal cortex (p<0.00005, p<0.0005 and p<0.00005), the right banks of the superior

temporal sulcus (p<0.001, p<0.001 and p<0.0005) and the right superior temporal cortex (p<0.005,

Figure 10. Comparison of ROI and Searchlight results. The within-participant searchlight cluster (p<0.05, FWE) is displayed in blue; the within-interval

searchlight cluster (p<0.05, FWE) is displayed in yellow; voxels that overlap between the searchlights are shown in green. The right entorhinal cortex

(q<0.05 FDR in both ROI analyses) is displayed in red; voxels that overlap between the within-interval searchlight and the right entorhinal ROI are

shown in green.

DOI: 10.7554/eLife.16070.022
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p=0.06 and p<0.0005). Thus, single voxels and multivariate patterns in entorhinal cortex changed

consistently more slowly than those in regions involved in auditory and language processing. More-

over, the mean FWHM in the right entorhinal cortex was one of the largest among all 84 regions,

ranking 3rd, 4th and 1st in the brain across the three procedures. The other regions with the slowest

voxel and pattern change included the temporal pole, medial and lateral orbitofrontal cortex, frontal

pole, perirhinal cortex, pars orbitalis and inferior temporal cortex.

On the other hand, the left caudal ACC ranked 66th, 67th and 46th out of 84 regions across the

three procedures, suggesting that it did not exhibit slow signal change relative to the rest of the

brain. Across the three procedures, the FWHMs in the left caudal ACC were larger than those in the

right transverse temporal cortex (p<0.01, p<0.005, and p=0.059), but generally smaller than those in

the right banks of the superior temporal sulcus (p=0.97, p=0.96, and p=0.42) and the right superior

temporal cortex (p=1.0, p=1.0, p=0.98). Thus, patterns in the left caudal ACC changed only slightly

more slowly than those in primary auditory cortex.

Taken together, all three variants of the analysis showed that the right entorhinal cortex, along

with other regions of the anterior and medial temporal lobe, orbitofrontal cortex and frontal pole,

had the slowest pattern change in the brain. These results do not seem to be due to differences in

the sizes of the anatomical masks and suggest that the right anterior MTL regions found most consis-

tently in our ROI and searchlight analyses process information that changes slowly over time. Our

findings are consistent with those of Stephens et al. (2013), who showed that auditory cortex

regions processing momentary stimulus features had intrinsically faster dynamics than higher-order

regions that integrated information over longer time scales (see also Lerner et al., 2011).

Story position effects cannot explain the correlation between duration
estimates and neural pattern change
We found that duration estimates systematically decreased as a function of position in the story,

with earlier intervals being estimated as longer than later intervals (Figure 11). The correlation

between the estimated duration of an interval and its time in the story was consistently negative

across participants (M=�0.40, SD= 0.22; t(16)=�7.59, p<0.00001).

This result may be a replication of the positive time-order effect: the finding that people judge

earlier durations in a series of durations to be longer than later durations (Block, 1982,

1985; Brown and Stubbs, 1988). The effect has been interpreted to mean that context usually

changes more rapidly at the start of a novel episode (Block, 1982, 1986). However, another possibil-

ity is that the characteristics of the particular story we picked are driving this result. In our story,

there was a strong negative correlation between the mean number of event boundaries per interval

and the position of the interval in the story (r=�0.77). Thus, the decrease in mean duration estimates

with story position may be due to the relationship between the number of event boundaries and

duration estimates (see Behavioral results).

If the decrease in duration estimates over time is due to a decrease in the amount of contextual

change over the course of the story, we might expect BOLD pattern dissimilarity to decrease over

time in the brain regions yielded by our ROI analyses. However, there was no consistent correlation

between pattern change during an interval and its time in the story for the right entorhinal cortex

Table 1. Speed of pattern change in the right entorhinal cortex and left caudal ACC relative to the rest of the brain. Full-Width Half-

Maximum (FWHM) values reflect how slowly patterns of activity (multivariate) or individual voxels (univariate) change over time. The

Multivariate (-ROI size) column reflects the slowness of pattern change when controlling for the effect of ROI size.

Multivariate Multivariate (-ROI size) Univariate

Region FWHM (TRs) Ranking FWHM (TRs) Ranking FWHM (TRs) Ranking

Right entorhinal M=18.9, SD=13.8 3rd M=1.2, SD=1.9 4th M=23, SD=15.6 1st

Left caudal ACC M=8.3, SD=1.8 66th M=-0.5, SD=0.5 67th M=9.2, SD=3.8 46th

Right transverse temporal cortex M=7.3, SD=1.2 80th M=-0.8, SD=0.5 83rd M=7.9, SD=1.2 68th

Right banks of superior temporal sulcus M=9.0, SD=2.1 48th M=-0.3, SD=0.4 49th M=8.8, SD=1.7 61st

Right superior temporal cortex M=11.0, SD=3.1 28th M=0.4, SD=0.6 18th M=10.3, SD=2.4 34th

DOI: 10.7554/eLife.16070.023
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(M=0.03, SD=0.21; t(16)= 0.65; p=0.53), the right pars orbitalis (M=�0.10, SD=0.22; t(16)=�1.83,

p=0.09), the left caudal ACC (M=�0.05, SD=0.18; t(16)=�1.15, p=0.27), the right amygdala

(M=�0.02, SD=0.23; t(16)=�0.28, p=0.78) or the right insula (M=�0.08, SD=0.25; t(16)=�1.34,

p=0.20). These results suggest that the relationship between duration estimates and pattern dissimi-

larity in these regions was not driven by a shared effect of story position. Rather, it seems that pat-

tern dissimilarity in these regions correlated with more fine-grained variations in the estimated

durations of nearby intervals (Figure 11).

To investigate why the above regions did not show the expected decrease in pattern dissimilarity

over time, we assessed whether any brain region in the FreeSurfer or MTL atlas might show this

effect. There was no brain region whose pattern of activity changed more at the beginning than at

the end of the story. Given that we were looking for a slow change in neural signal (unfolding over

the entire course of the story), we thought that our high-pass filter might be removing this slow

change; to address this possibility, we analyzed the unfiltered data. When we did this, we found that

neural pattern change in the unfiltered data showed a consistent correlation in the opposite

Figure 11. Mean duration estimates and pattern distances (across participants) for all 2-minute intervals as a function of the interval’s position in the

story. The middle time point of each 2-min interval (half-way between the two clips delimiting it) was chosen as the x-coordinate.

DOI: 10.7554/eLife.16070.024

The following source data is available for figure 11:

Source data 1. Duration estimates and pattern distances in all FreeSurfer and MTL ROIs for each 2-minute interval in every participant.

DOI: 10.7554/eLife.16070.025
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Figure 12. Replication of Jenkins and Ranganath (2010): activity at encoding predicts accuracy of temporal context memory. Top left panel: Timeline

estimates for a representative participant. The estimated temporal position of each clip is plotted against its actual position in the story. Top right

panel: Group-averaged residual error for each clip plotted against its time in the story. Our behavioral results mimic those of Figure 2 in Jenkins and

Ranganath (2010) showing that accuracy increases for clips that occurred later in the story. Bottom panels: Clusters that showed a significant

Figure 12 continued on next page
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direction: almost all brain patterns changed more at the end of the story than at the beginning,

including the CSF and white matter (q<0.05, FDR), suggesting that a signal unrelated to neural proc-

essing, such as scanner drift or motion, may cause activity patterns to change more as time passes

(see Figure 11—source data 1). Thus, even if the degree of neural pattern change were decreasing

over time, we might not be able to detect this effect, as it would have to overcome a global signal

in the opposite direction that is not due to neural activity and that is present everywhere, including

the CSF.

Replication of Jenkins and Ranganath (2010): activity at encoding predicts
accuracy of temporal context memory
As described in the Materials and methods (Time perception test section), besides estimating the

elapsed duration between pairs of clips from the story, participants were given an additional test,

where they indicated each clip’s position on the timeline of the story. The mean correlation (across

participants) between the actual and estimated temporal position on the timeline of the story was

r=0.885 (SD=0.05), suggesting that participants remembered the temporal position of each clip

extremely well (p<10–21). Figure 12 shows the timeline estimates for a representative participant

(top left panel), as well as the absolute residual error associated with each clip (top right panel),

group averaged and plotted against time in the story.

This behavioral dataset enabled us reproduce an fMRI analysis from Jenkins and Ranganath

(2010), where voxel activity at encoding was correlated with subsequent accuracy in remembering

when a trial occurred in the experiment. For each participant, we regressed the estimated timeline

position against the actual position and used the absolute value of the residual as a measure of

error. We found that the accuracy (negative error) of timeline placements was significantly correlated

with encoding activity in large clusters of the left dorsolateral prefrontal cortex and medial prefrontal

cortex, including dorsomedial PFC and anterior cingulate (p=0.008, FWE-corrected; Center of Grav-

ity MNI coordinates (x, y, z) in mm: [�20, 34.8, 28.4]; cluster size = 1121 voxels in 3 mm MNI space),

as well as sub-threshold clusters in the medial parietal cortex, including precuneus and posterior cin-

gulate (p=0.058, FWE-corrected; Center of Gravity MNI coordinates (x, y, z) in mm: [�10.5, �54,

16.1]; cluster size = 419 voxels), and left superior temporal gyrus (p=0.098, FWE-corrected; Center

of Gravity MNI coordinates (x, y, z) in mm: [�56.9, �19.1, �3.72]; cluster size = 270 voxels).

Discussion
While human and animal time perception has been a subject of intense empirical investigation (see

Wittmann, 2013), most neuroimaging studies have tested its mechanisms on the scale of millisec-

onds to seconds and neglected paradigms in which long-term memory plays an important role. Such

studies have typically employed prospective paradigms, in which participants must deliberately

attend to the duration of a stimulus. However, behavioral studies in humans have consistently dem-

onstrated that retrospective paradigms, in which participants are asked to estimate the duration of

an elapsed interval from memory, tap into different cognitive mechanisms from prospective ones

(Hicks et al., 1976; Zakay and Block, 2004; Block and Zakay, 2008). In retrospective paradigms,

changes in spatial, emotional and cognitive context tend to modulate estimates of elapsed time

(Block, 1992; Block and Reed, 1978; Sahakyan and Smith, 2014; Pollatos et al., 2014).

In the present study, we used changes in patterns of BOLD activity as a proxy for mental context

change. We sought to extend previous neuroimaging work by testing whether neural pattern change

predicts duration estimates on the scale of several minutes and in a more naturalistic setting, where

spatial location, situational inference, characters, and emotional elements can all drive contextual

change.

Figure 12 continued

correlation between activity at encoding and subsequent accuracy at placing a clip on the timeline of the story. The prefrontal cluster in light blue was

significant (p=0.008, FWE), while the medial parietal cluster (p=0.058, FWE) and the lateral temporal cluster in dark blue (p=0.098, FWE) were trending.

DOI: 10.7554/eLife.16070.026
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Participants were scanned while they listened to a 25-minute radio story and were subsequently

asked how much time (in minutes and seconds) had elapsed between pairs of clips from the story (all

pairs were in fact two minutes apart). Using this approach, we were able to probe retrospective

duration memory repeatedly within participants without needing to interrupt the encoding of the

story. This allowed us to leverage within-participant variability in neural pattern change and relate it

to a participant’s retrospective duration estimates.

Using a within-participant anatomical ROI analysis (encompassing 16 regions selected a priori),

we found that neural pattern distance in the right entorhinal cortex and right pars orbitalis at the

time of encoding was correlated with subsequent duration estimates. Extending this analysis to all

anatomical ROIs in cortex revealed an additional effect in the left caudal anterior cingulate cortex

(ACC). These results converged qualitatively with the results of our whole-brain searchlight analysis,

which revealed a significant cluster spanning the right anterior temporal lobe.

To test our interpretation that duration estimates were driven by contextual change, we asked a

separate group of participants to identify event boundaries in the story. We found that the number

of event boundaries between two clips was very highly correlated with participants’ subsequent

duration estimates. Importantly, the number of event boundaries was significantly less correlated

with duration estimates for a separate group of ’naı̈ve’ participants, who had been asked to estimate

the elapsed time between clips without first hearing the story. These behavioral experiments provide

evidence that retrospective duration estimates were indeed influenced by memory for intervening

contextual changes between clips.

In addition, we sought to rule out the possibility that neural pattern distance between two clips

reflected only the perceptual or semantic similarity between them, rather than the degree of mental

context change. We performed a within-interval analysis, in which pattern distances for the same

pair of clips were correlated with duration estimates across participants. The within-interval ROI anal-

ysis yielded effects of the same size in the right entorhinal cortex, right amygdala and right insula.

The within-interval whole-brain searchlight revealed a significant cluster in the right anterior tempo-

ral lobe. Thus, pattern distance in the right anterior temporal lobe, particularly the right entorhinal

cortex, predicted variability in duration estimates even when the perceptual and semantic distance

of the clips was controlled as much as possible, suggesting that pattern change in these regions may

capture idiosyncratic differences in mental context that cannot be predicted from the stimulus alone.

Finally, if neural pattern distance between two clips reflected only the similarity in content

between them, rather than abstract contextual similarity, we would expect the correlation between

pattern distance and duration estimates to be weakened when controlling for naı̈ve duration esti-

mates, which were based solely on the perceptual and semantic similarity between two clips. Fitting

a mixed-effects model to each ROI showed that neural pattern distance in the right entorhinal cor-

tex, along with the left caudal ACC, exhibited a significant effect on duration estimates even when

all other factors, including random effects of participants and intervals, as well as naı̈ve duration esti-

mates, were controlled for.

In support of the hypothesis that these regions represent slowly varying contextual information,

we found that the right entorhinal cortex, as well as adjacent regions of the MTL, temporal pole and

orbitofrontal cortex, had some of the slowest neural pattern change in the entire brain. This is in line

with findings that brain regions at the top of the processing hierarchy (furthest from the primary per-

ceptual areas) integrate information over longer time scales and are therefore best suited for repre-

senting abstract information extracted from multiple streams of sensory observations

(Stephens et al., 2013; Lerner et al., 2011).

Our results implicating the right entorhinal cortex in representing context fit well with other

results in the literature. Multiple lines of evidence have suggested an important role for the entorhi-

nal cortex in representing relationships between the spatial environment, task and incoming stimuli.

Lesions of the lateral entorhinal cortex in rodents have shown that this region is necessary for dis-

criminating between novel and familiar associations of object and place, object and non-spatial con-

text, or place and context, while leaving non-associative forms of memory unaffected

(Buckmaster et al., 2004; Wilson et al., 2013a; 2013b). Moreover, electrophysiological recordings

in rats performing a spatial memory task showed that neurons in the medial entorhinal cortex exhib-

ited greater context sensitivity and greater modulation by task-relevant mnemonic information than

hippocampal neurons, while hippocampal neurons carried more specific spatial information

(Lipton et al., 2007). Medial entorhinal neurons also exhibited longer firing periods, which led the
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authors to propose that they could bind a series of hippocampal representations of distinct events

(Lipton and Eichenbaum, 2008). Thus, changes in distributed entorhinal activity patterns on the

scale of minutes might represent changes in contextual elements that are later retrieved to make

duration judgments (for theoretical discussion of the role of entorhinal cortex in contextual represen-

tation, see Howard et al., 2005).

While the right entorhinal cortex was the only medial temporal lobe region that survived FDR cor-

rection in both our within-participant and within-interval ROI analyses, our whole-brain searchlights

found a significant relationship between pattern change and duration estimates in two extensive

clusters that overlapped in the right hippocampus, the right perirhinal cortex, right amygdala and

right temporal pole.

Two previous studies, Noulhiane et al. (2007) and Ezzyat and Davachi (2014), have directly

implicated the MTL in retrospective time estimation in humans. Ezzyat and Davachi (2014) scanned

participants while they were presented with trial-unique faces and objects on a scene background,

which changed every four trials. After each run, participants were asked whether pairs of stimuli had

occurred close together or far apart in time (all pairs were about 50 s apart). They found that neural

pattern distance in the left hippocampus at the time of encoding was greater for pairs of stimuli later

rated as ’far apart’, though only when the stimuli were separated by a scene change.

Noulhiane et al. (2007) used a retrospective behavioral paradigm similar to ours in patients with

unilateral MTL lesions. In that study, participants were asked to estimate the temporal distance

between object pictures that had been randomly inserted into a silent documentary film. They found

that the degree of left entorhinal, left perirhinal and left temporopolar cortex damage correlated

with the degree to which patients overestimated minutes-long intervals in retrospect. (For related

evidence from the animal literature, see Jacobs et al., 2013, who showed that bilateral inactivation

of the hippocampus impaired rats’ ability to discriminate between similarly long durations, such as 8

and 12 minutes, but not between less similar intervals, such as 3 and 12 minutes.)

Our ROI and searchlight results are in line with the above set of findings, and suggest that

patients with anterior MTL lesions might be impaired in retrospective time estimation because pat-

terns of activity in entorhinal, perirhinal, and temporopolar cortex encode contextual changes on the

scale of minutes. The set of regions we found is more extensive than those in Ezzyat and Davachi

(2014) and mostly right-lateralized. It is possible that the difference in the extent of our effects could

be explained by differences in the paradigms that were used. In both the Noulhiane et al. (2007)

and Ezzyat and Davachi (2014) studies, the links between objects and their context had to be delib-

erately constructed. In our study, the clips whose temporal distance participants estimated were

excerpts from a story, and therefore strongly linked with a situational, spatial, and emotional con-

text. Thus, it is possible that activity patterns in a more extensive cluster tracked temporal distance

estimates because our auditory story caused changes in a broader set of contextual features.

Extending our anatomical ROI analysis to the entire brain showed that pattern change in the left

caudal anterior cingulate cortex (ACC) predicted subsequent duration estimates, and this region

remained significant in a mixed-effects model controlling for the effect of naı̈ve duration estimates.

However, caudal ACC exhibited more rapid pattern change than the anterior and medial temporal

lobe, suggesting that it may represent a qualitatively different, faster-changing signal. Caudal ACC

activity has been shown to increase in response to shifts in task contingencies (see Shenhav et al.,

2013, for a review) and there is converging evidence that ACC responses are important for adjusting

behavior to unexpected changes by increasing attention and learning rate (Bryden et al., 2011;

Behrens et al., 2007; McGuire et al., 2014). O’Reilly et al. (2013) have provided evidence that the

ACC only responds to surprising outcomes when they necessitate updating beliefs about the current

state of the world. Although the present study was not designed to test such accounts, our findings

are consistent with a role for ACC in updating predictive models. Events in the story that prompt

participants to update their beliefs about the characters’ situation are also likely to cause changes in

cognitive context and therefore overestimation of duration. However, future studies are needed to

test this interpretation, for instance by manipulating belief updating independently of surprise and

measuring its effect on retrospective duration estimates.

In addition to the anatomical ROI analysis, we performed a whole-brain searchlight that yielded

an extensive cluster covering the right anterior temporal lobe, extending from the medial temporal

regions described above to the middle temporal gyrus and temporal pole. Prior work has suggested

that the middle temporal gyrus and temporal pole are involved in narrative comprehension
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(Ferstl et al., 2008; Mar, 2004) and narrative item memory (Hasson et al., 2007; Maguire et al.,

1999). Ezzyat and Davachi (2011) found a similarly located cluster (extending from the right perirhi-

nal cortex to the right middle temporal gyrus) to be involved in integrating information within narra-

tive events. In particular, they showed that activity within these regions gradually increases within

events and that this increase predicts the degree to which memories become clustered within

events. Retrospective time judgments have been shown to increase with the number of events an

interval contains (Poynter, 1983; Zakay et al., 1994; Faber and Gennari, 2015), suggesting that

brain regions involved in clustering memories by events may carry important information for estimat-

ing durations.

Finally, we were able to replicate an analysis by Jenkins and Ranganath (2010), who showed that

activity during encoding in the left lateral prefrontal cortex and right anterior hippocampus pre-

dicted accuracy in remembering when a trial had occurred in the experiment. Our analysis revealed

a cluster in the left dorsolateral prefrontal cortex that is similar to that found in their study. However,

we also found significant clusters in the medial prefrontal and medial parietal cortex. These regions

may be important for maintaining narrative information over minutes-long timescales (Lerner et al.,

2011; Hasson et al., 2015; Chen et al., 2015), which might explain why their activity predicted tem-

poral context memory for clips from an auditory story, but did not appear in Jenkins and Ranganath

(2010), where participants recalled the timing of trials which were not linked by a narrative. More-

over, our clusters overlap highly with the ’posterior medial network’ (Ritchey and Ranganath,

2012), which has been consistently implicated in episodic memory, episodic simulation and theory

of mind.

Conclusion
After probing human participants’ time perception for intervals from an auditory story they had just

heard, we found substantial variability in subjective estimates of the passage of time. This variability

was significantly correlated with changes in BOLD activity patterns in the right anterior temporal

lobe, particularly the right entorhinal cortex, between the start and end of each interval. Control

experiments demonstrated that duration estimates were strongly driven by contextual boundaries

and that the relationship between neural distance and behavior still held when we controlled for the

perceptual and semantic similarity of the clips. Our findings suggest that patterns of activity in these

regions might encode contextual information that participants can later retrieve to infer the dura-

tions of intervals on the scale of minutes. Additional work is needed to assess how these regions

contribute to representing particular contextual features (such as physical environment, abstract task

states, and emotional states) and whether changes in each of these features affect retrospective

duration estimates differently.

Materials and methods

Participants
18 participants (13 female) took part in the study. All participants were recruited from the Princeton

undergraduate and graduate student population and were between 18 and 31 years of age (mean =

22 years). All participants were screened to ensure no neurological or psychiatric disorders. Written

informed consent was obtained for all participants in accordance with the Princeton Institutional

Review Board regulations. Participants were compensated $20/hr for the scanning session, and $12/

hr for the behavioral session.

Given that no previous studies had related neural pattern change during a naturalistic stimulus to

subsequent duration estimates for minutes-long intervals, we could not a priori estimate the variance

in the pattern change signal, the variance in duration estimates, or the correlation between them.

Therefore, rather than performing a power analysis, we chose a sample size that was in the same

range as previous fMRI studies that had used naturalistic stimuli to study memory (Lerner et al.,

2011, n=11 per condition; Chen et al., 2015, n=13, 14 and 24 per condition; Chen et al., 2016,

n=22 [5 excluded]), as well as fMRI studies that had related neural pattern distance to mnemonic

judgments (Ezzyat and Davachi, 2011, n=19; Jenkins and Ranganath, 2010, n=16 (1 excluded);

Ezzyat and Davachi, 2014, n=21 (3 excluded), Jenkins and Ranganath, 2016, n=17).
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Experimental design and stimuli
The experiment consisted of two parts: an approximately 40-min session in the MRI scanner, during

which participants listened to the auditory story, followed immediately by a 1-hr behavioral session,

during which participants completed a time perception test on the story they had just heard. Fig-

ure 1 illustrates the experimental procedure.

fMRI session
Prior to the fMRI session, participants were instructed to listen carefully to the auditory story while in

the scanner, because they might be asked questions about it later. The nature of the follow-up ques-

tions was unknown to the participants. While in the scanner, participants listened to a 25-minute-

long radio adaptation of a science fiction story called ’Tunnel Under the World’ (written by Frederik

Pohl), originally aired on the radio drama series, ’X Minus One’, in 1956.

Time perception test
After leaving the scanner, participants were surprised with a time perception test, presented on a

laptop with the Psychophysics toolbox (Brainard, 1997; Pelli, 1997) for MATLAB (The MathWorks

Inc., Natick, MA). For each of 43 questions, participants listened to a 10 s clip from the story, fol-

lowed by another 10 s clip, and were asked to estimate how much time had passed between the first

and second clips when they initially heard the story. Participants were specifically asked to estimate

how much time had passed in their own lives, rather than how much narrative time had passed in

the story. They were also asked to make the judgments as intuitively as possible, without resorting

to deductive reasoning about the sequence of events that unfolded in between the two excerpts.

Participants had complete control over the pacing of the test. On each question, they initiated

the playing of the clips, and were able to replay the clips if they missed them the first time. They

could take as long as they wished to enter their duration estimates (in minutes and seconds), using

the keyboard. Clip pairs were identical across participants, but the order in which the pairs were pre-

sented was randomized.

To control for the objective passage of time, we ensured that 24 of the clip pairs were 2 minutes

apart and 19 of the pairs were 6 minutes apart. Debriefing showed that participants were unaware

of this manipulation, and the high variability of duration estimates for both the 2 and 6-min intervals

further confirmed that they were unaware of the fixed interval durations.

After participants had provided duration estimates for all 43 intervals, the 86 clips that had delim-

ited those intervals were replayed in a random order (unpaired), and participants were asked to

place each clip on the timeline of the story. For each of the 86 questions, a white line appeared on a

black background, representing the full length of the story. Participants could place their cursor at

any point on that line, followed by the Enter key. After each placement, they were asked to provide

a confidence rating on a scale of 1 to 5, reflecting their confidence about that clip’s place in the

story. Participants were instructed to base the confidence rating on their certainty of when that clip

occurred in the story, rather than on the vividness of the memory for that clip.

Please note: the first of our 18 participants completed a version of the time perception test that

differed only in the following way: the specific intervals in the story whose duration was asked about

were different. In all other respects (half of the intervals were 2 min while the other half were 6 min

apart), the behavioral test was identical to the subsequent 17 participants. For this reason, however,

any analyses where duration estimates are compared across participants were performed on 17

rather than 18 participants. Any within-participant analyses were performed on all 18 data sets.

Naı̈ve time perception test
To address the concern that participants were estimating temporal distance between two clips

based purely on the content of the clips (rather than their memory of when the clips had occurred in

the story), we administered an identical time perception test to a separate group of 17 participants

who had never heard the story. Naı̈ve participants were asked to try their best to guess how much

time passed between each pair of clips during the original telling of the story, even though they had

never heard the story. Participants were told the length of the story (25 min, 33 s) and informed that

the maximum distance between two clips could not exceed that duration.
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Event boundary test
A separate group of 9 participants were asked to listen to the same story and to press the space bar

every time they thought an event had ended and a new event was beginning. This test was purely

behavioral and fMRI data were not collected for these participants.

Behavioral data analysis
Significance of correlation between duration estimates and event
boundaries
To assess whether the number of event boundaries in an interval predicted duration estimates for

that interval, we related our original participants’ duration estimates with event boundary data col-

lected from a separate group of 9 participants. For each 2-min interval from the time perception

test, we counted the number of event boundaries that a participant had indicated during that inter-

val and averaged that number across the 9 participants. This resulted in a mean number of event

boundaries per interval, which was then correlated with the mean estimated duration of that interval

from our original participants.

To assess the statistical significance of this correlation, we performed a bootstrapping procedure

on the duration estimates. We obtained 1000 bootstrap samples, each time selecting with replace-

ment a different subset of n individuals from our pool of n participants. The duration estimates for

each subset were averaged across participants and correlated with the mean number of event

boundaries. The upper limit (ul) for an x% confidence interval was set to the value of the Pearson

correlation in percentile x% of the bootstrap distribution; the lower limit (ll) for the confidence inter-

val was set to the value of the Pearson correlation in percentile 100-x of this distribution. Confidence

intervals that did not encompass zero were considered reliable at the given level of confidence.

Significance of difference in correlations with event boundaries between
original duration estimates and naı̈ve duration estimates
We hypothesized that duration estimates from our original participants (who had actually heard the

story) would be significantly more correlated with the number of event boundaries between two

clips than duration estimates from our naı̈ve participants, who had never heard the story. To assess

the significance of the difference in correlations, we computed the rdiff (empirical difference), as well

as the upper confidence limits (uldiff ) and lower confidence limits (lldiff ) for the difference between

the two correlations. We used the following formulae (Zou, 2007; Poppenk and Norman, 2012) for

two bootstrapped correlation confidence intervals:

rdiff ¼ r1� r2

lldiff ¼ r1� r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr1 � ll1Þ
2 þðul2 � r2Þ

2

q

uldiff ¼ r1 � r2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðul1 � r1Þ
2 þðr2� ll2Þ

2

q

The upper (ul1;ul2) and lower limits (ll1; ll2) for a 95% confidence interval of each group’s correla-

tion were calculated as described above.

Reliability of duration estimates across participants within and between
groups
We hypothesized that both our original participants and the naı̈ve participants (who had never heard

the story) would use consistent strategies to estimate the temporal distance between two clips, but

that these strategies would differ across groups. If this is the case, duration estimates should be

more reliable across participants within groups than across participants between groups.

To assess within-group reliability, we correlated each participant’s duration estimates with the

mean of the other participants’ estimates. These correlations were then averaged across participants

within a group to obtain a mean within-group ISC (inter-subject correlation). The between-group reli-

ability was calculated by correlating each participant’s duration estimates from one group (e.g., the
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original participants) with the mean duration estimates from the other group (e.g., the naı̈ve partici-

pants). These correlations were then also averaged across participants to obtain a mean between-

group ISC. Confidence intervals for the mean between-group ISC were calculated by bootstrapping

the duration estimates from both groups 10,000 times, each time selecting with replacement a dif-

ferent subset of n individuals from our pool of n participants. The between-group ISCs were calcu-

lated for each bootstrap sample and averaged across participants, resulting in a distribution of

10,000 mean between-group ISCs. Confidence intervals for the within-group ISC were obtained in a

similar manner.

To assess the significance of the difference between the mean within-group ISC and the mean

between-group ISC, we compared the empirical difference with a null distribution of differences.

Group labels (naı̈ve participants vs. original participants) were scrambled 10,000 times, such that

each participant’s duration estimates were randomly assigned to either the naı̈ve group or to the

original group. The difference between the mean within-group ISC and the mean between-group

ISC was then computed for these two random groups. Using this null distribution of ISC differences,

we calculated a p-value based on the number of permutations that yielded a greater difference than

the empirical difference.

Please note that the within-group and between-group correlations could be compared only

because the group sizes were identical (17 participants in each) and because the within-group corre-

lations were equally strong for the original and naı̈ve groups (M=0.43, SD=0.25, 95% CI=[0.37, 0.58]

vs. M=0.43, SD=0.18, 95% CI [0.40, 0.56]). Since the within-group ISCs are comparable, we can infer

that the significant difference between the within-group and between-group reliability reflects a dif-

ference in the signals (strategies) underlying the two groups of duration estimates (Chow et al.,

2015), rather than a difference in within-group reliability.

MRI acquisition
Participants were scanned in a 3T full-body Skyra MRI scanner (Siemens, Munich, Germany) with a

20-channel head coil. Functional images were acquired using a T2*-weighted echo planer imaging

(EPI) pulse sequence (repetition time [TR], 1500 ms; echo time [TE], 28 ms; flip angle, 64˚), each vol-

ume comprising 27 slices of 4 mm thickness. In-plane resolution was 3�3 mm2 (field of view [FOV],

192�192 mm2). Slice acquisition order was interleaved. Anatomical images were acquired using a

T1-weighted magnetization-prepared rapid-acquisition gradient echo (MPRAGE) pulse sequence

(TR, 2300 ms; TE, 3.08 ms; flip angle 9˚; 0.89 mm3 resolution; FOV, 256 mm2). Participants’ heads

were stabilized with foam padding to minimize head movement. Auditory stimuli were presented

using the Psychophysics toolbox (Brainard, 1997; Pelli, 1997). Participants were provided with MRI

compatible in-ear mono earbuds (Model S14, Sensimetrics Corporation, Malden, MA), which pro-

vided the same audio input to each ear. MRI-safe passive noise-canceling headphones were placed

over the earbuds for additional protection against noise.

fMRI data preprocessing
FMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) Version 5.98, part of

FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). The following procedure was applied:

motion correction using MCFLIRT (Jenkinson et al., 2002); slice-timing correction using Fourier-

space time-series phase-shifting; non-brain removal using BET (Smith, 2002); spatial smoothing

using a Gaussian kernel of FWHM 6.0 mm; grand-mean intensity normalization of the entire 4D data-

set by a single multiplicative factor; and high-pass temporal filtering (Gaussian-weighted least-

squares straight line fitting, with sigma=240.0 s). The procedure for selecting the high-pass filter is

described below. Preprocessed data were kept in the native functional space for all analyses, except

for the within-interval searchlight analysis, which was performed across participants.

Preprocessed data were then despiked using the following procedure: for each voxel, data points

that deviated from the mean by more than 5 times the inter-quartile range were removed and

replaced using cubic interpolation.
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Procedure for obtaining anatomical masks: FreeSurfer and MTL
segmentation
Segmentation was performed in a semi-automated fashion using the FreeSurfer image analysis suite,

which is documented and available online (version 5.1; http://surfer.nmr.mgh.harvard.edu) with

details described previously (e.g. Fischl et al., 2004; Poppenk and Norman, 2014). Briefly, this

processing includes removal of non-brain tissue using a hybrid watershed/surface deformation pro-

cedure (Ségonne et al., 2004), automated Talairach transformation, intensity normalization

(Sled et al., 1998), tessellation of the grey matter / white matter boundary, automated topology

correction (Fischl et al., 2001; Segonne et al., 2007), surface deformation following intensity gra-

dients (Fischl and Dale, 2000), parcellation of cortex into units based on gyral and sulcal structure

(Desikan et al., 2006; Fischl et al., 2004), and creation of a variety of surface-based data, including

maps of curvature and sulcal depth.

We resampled and aligned FreeSurfer segmentations of all grey matter, white matter, and cere-

brospinal fluid (CSF) regions to native functional image space for use as anatomical masks. Anatomi-

cal regions were segmented according to the Desikan-Killiany Atlas (Desikan et al., 2006).

It is important to note that the medial temporal lobe (MTL) masks in the Desikan-Killiany Atlas do

not match the canonical anatomical distinctions in the literature. For example, the parahippocampal

gyrus mask comprises the medial part of the parahippocampal cortex and the posterior part of the

entorhinal cortex. Therefore, instead of the FreeSurfer MTL masks, we used a probabilistic MTL atlas

developed by Hindy and Turk-Browne (2015). MTL regions, including perirhinal cortex, entorhinal

cortex and parahippocampal cortex were defined probabilistically in MNI space, based on a data-

base of manual MTL segmentations from a separate set of 24 participants. Manual segmentations

were created on T2-weighted turbo spin-echo images using anatomical landmarks (Duvernoy, 2005;

Carr et al., 2010; Schapiro et al., 2012) and then registered to an MNI template. Finally, nonlinear

registration (FNIRT; Andersson et al., 2007) was used to register the masks from MNI space to each

participant’s native space. After registration, voxels with a probability greater than 0.3 of being in a

region were assigned to that ROI.

Residualization of non-neuronal signal sources
Slow changes of respiration over time (RV) have been shown to induce robust changes in the BOLD

signal (Chang et al., 2009) in many areas around the cerebral midline. To minimize signal change

unrelated to neural activity, we used multiple linear regression to project out 3 nuisance variables

from the BOLD data (Behzadi et al., 2007; Silbert et al., 2014). Nuisance regressors were:

1. the average time course of high standard deviation voxels (voxels with the top 1% largest stan-
dard deviation), as these voxels tend to have the highest fractional variance of physiological
noise (e.g., cardiac and respiratory components) and are likely near blood vessels
(Behzadi et al., 2007),

2. the average BOLD signal measured in CSF,
3. the average white matter signal.

All masks (grey matter, white matter and CSF) were obtained from the FreeSurfer segmentation

procedure described above. The beneficial effects of this residualization procedure on the signal-to-

noise ratio are shown in Figure 13. Note that this procedure was always applied after removal of

low-frequency components using the high-pass filter (see below).

Methodological challenges with analyzing pattern distance over long time
scales: Selection of temporal high-pass filter cut-off
Because we were interested in the aspect of neural activity that changes slowly over time (reflecting

gradual changes in context), we could not use a standard high-pass filter (with a cut-off period on

the order of 120 s), as it would remove components of the signal that evolve on the scale of minutes.

Thus, we were faced with the challenge of preserving slower components of the BOLD signal that

reflect neural activity, while removing low-frequency components attributable to non-neuronal noise,

including scanner drift and physiological noise (such as low-frequency respiratory variation and heart

rate variation). Physiological noise (and a substantial component of scanner noise) was factored out
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Figure 13. Mean inter-subject correlations (ISCs) for 6 representative brain regions as a function of the high-pass filter cut-off. Shaded error bars

represent standard errors of the mean (across participants). Top panel (A) shows the mean ISCs after the residualization procedure has been applied

(see Residualization of non-neuronal signal sources). The 480 s cut-off was the gentlest filter for which all of the grey matter regions listed above

showed ISC values significantly above those in the CSF. Bottom panel (B) shows the mean ISCs prior to the residualization procedure. Without

Figure 13 continued on next page
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using the residualization procedure described above. This enabled us to select a gentler high-pass

filter than is generally used in the literature.

We then performed a separate analysis to determine the optimal high-pass filter cut-off period,

i.e. the lowest frequency cut-off that still enabled us to remove most of the non-neuronal noise. This

analysis relies on the idea that, when participants listen to the same story or watch the same film,

the signal in brain regions processing the story is highly correlated across participants

(Hasson et al., 2004). While such correlations should not be present in CSF or white matter, spuri-

ous inter-subject correlations in these regions can arise due to low-frequency noise. In addition, lis-

tening to the same story could induce correlated motion across participants, but these correlations

would also be present in CSF and white matter. Thus, we searched for a high-pass filter that could

remove nonspecific correlations in CSF and white matter, while preserving correlations in brain

regions known to be important for processing the stimulus. For each participant, the inter-subject

correlation (ISC) of a brain region was defined as the correlation between that participant’s ROI time

course (averaged over voxels in that region) with the average time course of all the other partici-

pants (Hasson et al., 2008; Lerner et al., 2011).

Since the functional scan length was 1560 s (26 min), high-pass filter cut-off periods of 140 s,

240 s, 300 s, 400 s, 480 s, 600 s and 720 s were attempted. The minimal cut-off attempted, 140 s,

was the cut-off used in several previous studies with naturalistic stimuli (e.g. Lerner et al., 2011),

while 720 s represented approximately half of the scan duration and was the longest cut-off that

could reasonably make a difference to data quality.

Given that roughly half the clip pairs in our time perception test were 2 min apart and the other

half were 6 min apart, we hoped to find a filter that would allow us to measure pattern distances at

both of these time scales. However, we were unable to find a high-pass filter that would allow us to

examine activity patterns that were 6 min (360 s) apart. In order to meaningfully measure distances

between neural patterns that are 360 s apart, the Nyquist theorem suggests we would need a high-

pass filter cut-off of 720 s or larger. However, plotting ISC as a function of high-pass filter (Figure 13)

showed that a cut-off like 720 s was not able to remove inter-subject correlations in the CSF, which

remained of the same magnitude as those in some grey matter regions. We concluded that pattern

distances at the 6-minute time scale are too confounded with low-frequency noise (as reflected in

spurious correlations in the CSF), and therefore restricted our analysis to intervals that were 2 min

long.

According to the Nyquist theorem, we need a filter cut-off of 4 min (240 s) or longer in order to

measure distances between patterns that are 2 min apart (120 s). Out of the filters tested (240 s –

720 s), a cut-off of 480 s was selected to be the gentlest (i.e. the longest) filter that reduced the

magnitude of inter-subject correlations in ventricles and CSF, such that they were significantly below

the correlations in most grey matter regions.

Figure 13 illustrates that, even for regions like the hippocampus – with relatively low inter-subject

correlations – the 480 s filter cut-off, combined with the residualization procedure, succeeded at

raising the grey matter ISCs significantly above those of the white matter and CSF.

fMRI data analysis
Within-participant correlation between pattern change and duration
estimates
Our primary hypothesis was that greater pattern dissimilarity between two clips (at the time of

encoding) would correlate with greater subsequent duration estimates. For each pair of clips from

the time perception test, we located the TRs (volumes) corresponding to when the participant first

heard those clips and extracted the activity patterns for each ROI at those time points. Since the

auditory clips were between 5 s and 10 s in duration (corresponding to about 5 volumes), we

Figure 13 continued

residualization, the ISCs of some grey matter regions never rise significantly above those in the white matter and CSF. Note that without high-pass

filtering (’none’) or residualization, all brain regions displayed spuriously high ISCs.

DOI: 10.7554/eLife.16070.027
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averaged the patterns over 5 consecutive TRs for every clip, with the 5-TR window centered on the

middle of each clip.

We then related the pattern distance between the two clips at encoding to how much time the

participant thought passed between them. Specifically, we calculated the dissimilarity (1 – Pearson

correlation) between the two averaged activity patterns. The pattern dissimilarity scores for a given

region were then correlated with that participant’s subsequent duration estimates. This was per-

formed separately for every ROI and searchlight (Figure 4). We thus obtained a Pearson correlation

score for every ROI in every participant. All Pearson correlation coefficients were Fisher-transformed

prior to statistical testing (Fisher, 1915).

To assess the reliability of the correlation across participants for a given ROI, we ran a phase-ran-

domization procedure, which is described in detail below. The results of the phase-randomization

procedure were then subjected to multiple comparisons correction.

Removing low-confidence intervals
If a participant could not remember when in the story a particular clip had occurred, it would be

difficult for them to estimate the temporal distance between that clip and another clip. It is possi-

ble that participants would invoke different retrieval strategies in such cases (for instance, they

might base their duration estimates purely on the content of the clips, without recollecting their

context). It is also possible that such estimates could be random guesses. To filter out guesses, we

used the confidence ratings collected after the time perception test, in which participants rated

how well they could remember when in the story each individual clip had occurred. Specifically, we

located the participant’s confidence for the two clips delimiting each temporal interval, and took

the smaller of the two ratings as the confidence for that interval. We performed the main analysis

relating neural drift to time estimation only on high-confidence intervals, removing pairs of clips

with the lowest confidence. Since participants calibrated their confidence ratings differently (some

were more prone to rate their confidence as 4/5, while others were more prone to rate it as 2/5),

we picked the confidence threshold for each participant that removed at least 33% of the intervals

with the lowest confidence, while preserving at least 33% of the intervals with the highest confi-

dence. Our behavioral analysis (see Behavioral results) shows that participants’ duration estimates

were significantly more accurate for high-confidence intervals than when all intervals were

included.

Statistical analysis of correlations between pattern change and behavior
Because of the presence of long-range temporal autocorrelation in the BOLD signal (Zarahn, 1997),

the statistical likelihood of each observed correlation (between neural distance and duration esti-

mates) was assessed using a permutation procedure based on surrogate data. The surrogate data

were generated using phase randomization (Theiler et al., 1992). Phase-randomized surrogates

have the same autocorrelation as the original signal.

Since our analysis measures pattern change over multiple voxels, rather than the time course of a

single voxel, we generated surrogate time courses of pattern change (Figure 4—figure supplement

1 shows how that time course was obtained). Having extracted the time course of pattern change

for each ROI, we applied a Fourier transform to that signal. To randomize its phases, we multiplied

each complex amplitude by ejf, where f is independently chosen for each frequency from the inter-

val [0, 2p]. In order for the inverse Fourier transform to be real (no imaginary components), we sym-

metrized the phases, so that fðf Þ ¼ �fð�f Þ. Finally, we took the inverse Fourier transform to

produce the surrogate time courses.

Each surrogate dataset was analyzed in the same manner as the empirical data: pattern dissimilar-

ity between each pair of clips was correlated with duration estimates. Thus, we generated a distribu-

tion of 10,000 null correlations for every ROI in every participant (see Figure 4—figure supplement

1). As above, all correlation coefficients were Fisher-transformed to ensure that they follow a Gauss-

ian distribution. For every ROI, we were then able to compare the empirical Pearson correlation with

the distribution of null correlations. We calculated a Z-value for every participant:

z� value¼
empirical correlation�meanðnull correlationsÞ

standard deviationðnull correlationsÞ
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A large positive Z-value implies that the empirical correlation is large relative to the distribution

of null correlations. To assess whether the Z-values for a given ROI were reliably positive across par-

ticipants, we performed a right-tailed t-test against 0. The p-values from the above t-test were then

subjected to multiple comparisons correction. For anatomical ROIs (derived from the FreeSurfer and

MTL atlases), we used MATLAB’s fdr_bky.m function, which executes the ’two-stage’

Benjamini et al. (2006) procedure for controlling the false discovery rate (FDR) of a family of hypoth-

esis tests. The procedure implemented by this function is more powerful than the original

Benjamini and Hochberg (1995) procedure when a considerable percentage of the hypotheses in

the family are false. For the searchlight analysis, we controlled the family-wise error (FWE) rate, as

described below.

ROI selection
The literature reviewed above suggests that the MTL, lateral prefrontal cortex, insula, putamen and

inferior parietal cortex might all process information important for inferring the duration of past

events. We therefore performed an ROI analysis on the following regions, derived from both the

FreeSurfer and MTL atlases: hippocampus, parahippocampal cortex, entorhinal cortex, perirhinal

cortex, amygdala, superior frontal cortex, caudal and rostral middle frontal gyrus (dorsolateral pre-

frontal cortex), pars opercularis (frontal operculum), pars triangularis, pars orbitalis, lateral orbito-

frontal cortex, frontal pole, insula, putamen and inferior parietal cortex. This resulted in an analysis

on 16 regions of interest (in each hemisphere) motivated by the literature. ROIs with q-values < 0.05

(FDR) are reported as significant.

As part of an exploratory, whole-brain search, we also ran the same analysis on all grey matter

regions in the Desikan-Killiany Atlas, which contained 42 regions in each hemisphere, including the

ones mentioned above (see Procedure for obtaining anatomical masks: FreeSurfer and MTL segmen-

tation). The complete list of regions can be found in Figure 5—source data 1. For the exploratory

analysis, we report regions with q-values < 0.1 (FDR).

Within-interval correlation between pattern change and duration estimates
Our main analysis verified whether the pattern distance between two clips was correlated with dura-

tion estimates in a given participant and then aggregated the results across participants. To address

the concern that pattern distance between two clips might reflect only the difference in story con-

tent between those clips (rather than change in abstract factors like mental context), we performed

the same analysis for a given interval across participants and aggregated the results across intervals.

Since this analysis is performed within intervals, it ensures that story content is held constant across

participants, such that differences in pattern distances and duration estimates are due to individual

differences only. To ensure that pattern distances and duration estimates were comparable across

participants, all vectors were z-scored within participants. The Pearson correlation between pattern

distances and duration estimates across participants was then calculated for every 2 min interval in

every ROI.

As for the within-participant analysis, this procedure was performed on high-confidence intervals.

For each interval, we only included participants who had confidently recollected the temporal posi-

tion of the two clips delimiting that particular interval.

The significance of each correlation score was assessed using a permutation test: 10,000 null cor-

relations were obtained by scrambling the duration estimates across participants, such that a given

participant’s duration estimate was matched with a different participant’s pattern distance. (Since

this analysis was performed across participants, it was not necessary to generate phase-randomized

pattern distance time courses – the auto-correlation in the BOLD signal for a given participant only

represents a concern for the within-participant analysis.)

As above, a Z-value was obtained for every interval, reflecting the degree to which the empirical

correlation was higher than the distribution of null correlations. Finally, a right-tailed t-test was per-

formed to assess whether a given ROI’s Z-values were reliably positive across intervals. The p-values

from this t-test were subjected to multiple comparisons correction using FDR.

To compare effect sizes between the within-interval and within-participants analyses, we calcu-

lated Cohen’s d for a region as:
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Cohen0sd¼
mean r ðacross participants or intervalsÞ

standard deviation r

where r is the Pearson’s correlation between pattern distance and duration estimates. (Using the

Z-values derived from the permutation procedures rather than the raw correlation coefficients

yielded practically identical results.)

Mixed-effects model accounting for naı̈ve duration estimates
We analyzed our data using a hierarchical linear regression model (Gelman and Hill, 2006). Known

in different fields as hierarchical, mixed, or multi-level models, such regressions correctly account for

non-independence of repeated observations of the same subject and stimulus (in our case, interval).

In doing this, they estimate the population effects (coefficients) of interest, even assuming that indi-

vidual subjects or items (henceforth, collectively ’groups’) may have idiosyncratic perturbations from

the population and that those perturbations may be correlated within a group. They are a generali-

zation of approaches that treat all observations as independent (e.g. t-test, ANOVA, linear regres-

sion), as well as of approaches that can take into account the non-independence across a single

grouping factor (e.g. repeated-measures ANOVA), and are more conservative than any of the above

(Barr et al., 2013). (More precisely, methods that do assume observation independence are anti-

conservative in the presence of correlated observations.)

Formally, the model is the following:

yi ¼ Xiðbþ sj½i�þmk½i�Þþ �

sj ~Nð0;SsÞ; mk ~Nð0;SMÞ; �~Nð0;sÞ

Here, yi is the ith observed duration judgment, Xi is a matrix of predictors (neural pattern dis-

tance) and covariates (naı̈ve duration estimates), bi is a vector of coefficients (as in conventional lin-

ear regression), j½i� is the subject of the ith observation, so that sj½i� is a subject-specific perturbation

of all of the coefficients, and mk½i� is similarly an item-specific perturbation of the coefficients.

This model is undefined when either the subject or item effects approach zero (either because

there is truly no variability, or more realistically when there is insufficient data to estimate this vari-

ability). Since such rich models often fail to converge or approach singularity given typical psycholog-

ical datasets (Bates et al., 2015a), we imposed a weak Wishart prior on the group covariances,

which regularizes the model away from singularity (Chung et al., 2015). This weak, boundary-avoid-

ing prior on our random effects covariance structure regularizes the model towards simpler random

effects structures unless the data suggests otherwise (Chung et al., 2015). All models converged

under this prior. This fitting procedure was implemented using the R package blme (Chung et al.,

2013), which extends the lme4 package (Bates et al., 2015b) and performs maximum-a-posteriori

estimation of linear mixed-effects models.

Please note that we also verified that our results were replicable using an alternative fitting proce-

dure suggested by Bates et al. (2015a). We used the lme4 package to fit the ‘maximal’ model (in

the sense of Barr et al., 2013) and removed zero-variance random effects terms until the model con-

verged and until the estimated random effects covariance matrix was full-rank, indicating a non-

degenerate estimate. We obtained highly consistent results using both fitting procedures. In the

Results section, we report only the first procedure, which has been found to be more conservative

(Chung et al., 2015). Chung et al. (2015) report: ’Uncertainty for the fixed coefficients is less under-

estimated than under classical ML or restricted maximum likelihood estimation.’ Indeed, our effects

were very slightly stronger using the second procedure (Bates et al., 2015a). Both sets of results

can be found in Figure 7—source data 1.

Finally, the duration estimates are bounded at zero and positively skewed, which resulted in het-

eroskedastic residuals. To mitigate this, we power-transformed the duration estimates using the

Box-Cox power transformation (Box and Cox, 1964). We picked the exponent l for each model by

maximizing the profile likelihood in a model without group effects (though see e.g. Gurka et al.

(2006) for an extension to the hierarchical case).

In R formula notation, a model of the following form was fit to the data from each region of

interest:
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TransformedDurationEstimates~1þNaiveEstimatesþNeuralPatternDistance

þð1þNaiveEstimatesþNeuralPatternDistance j SubjectÞ
þð1þNeuralPatternDistance j IntervalÞ

Please note that participants from the original experiment could not be ’matched’ with partici-

pants from the naı̈ve experiment. For this reason, naı̈ve duration estimates were group-averaged

and the mean vector of naı̈ve estimates was placed as a covariate in the model. The above formula

shows that the slope of the relationship between naı̈ve estimates and original duration estimates

was allowed to vary by subject (i.e. each participant’s duration estimates might be differently related

to the naı̈ve group mean). On the other hand, the slope for naı̈ve estimates could not vary by inter-

val, since naı̈ve estimates did not vary by subject.

We computed 0.95 confidence intervals of b using the asymptotic Gaussian approximation (called

the ’Wald approximation’ in lme4) based on the estimated local curvature of the likelihood surface.

Since this approximation is anti-conservative (it assumes infinite data and no model misspecification),

we then computed a more conservative parametric bootstrap interval for the intervals that did not

include zero. Effects whose interval does not overlap with 0 are significant at the conventional

a=0.05 level.

Note that all of the above choices (including the choice of fitting procedure and the power trans-

form of the data) are conservative relative to their alternatives. For instance, prior to power-trans-

forming the duration estimates, the fixed effects of neural pattern distance were estimated to be

stronger (as reported in Figure 7—source data 1.) These alternative analyses revealed additional

significant regions that are either false positives or regions we lack the power to detect.

Whole-brain searchlights
In addition to using anatomical ROIs, we ran a cubic searchlight throughout the entire brain. The

same analysis as described above was performed for every searchlight, and the Z-value for each

searchlight was assigned to the center voxel.

The within-participant analysis was performed in native functional space, and each cubic search-

light contained 3x3x3 (27) voxels. To aggregate the results across participants, each participant’s

Z-value map was transformed to standard MNI space and down-sampled to 3 mm to reflect the res-

olution of the original data.

The within-interval analysis was performed in 3 mm MNI space, in order to match the searchlights

across participants. Since this transformation approximately doubles the number of brain voxels, we

ran cubic searchlights of radius 2 with 5x5x5 (125) voxels through the entire brain. Neural pattern

distance was not calculated for searchlights on the very edge of the brain with fewer than 25 voxels,

in order to reduce noise from overly small patterns. We also excluded a searchlight location if fewer

than 5 participants had brain voxels in that location.

Family-wise error rate was controlled using FSL’s randomise function (version 5.0.4,

Winkler et al., 2014). An uncorrected p-value image was first generated, reflecting voxel-wise

(searchlight) reliability across participants or intervals. The significance of supra-threshold clusters

(defined by the cluster-forming threshold, p<0.01) was then assessed by cluster mass. Specifically, a

corrected p-value was assigned to each cluster by assessing its cluster mass with respect to the null

distribution of the maximum cluster mass during 10,000 permutation simulations (Hayasaka and

Nichols, 2003; Nichols and Holmes, 2002). Cluster coordinates are reported in MNI space, and

cluster size reflects the number of voxels in 3x3x3mm MNI space.

Comparing speed of pattern change across brain regions
If the brain regions that showed significant effects in our main analysis represent mental context,

then the pattern of activity in these regions should change more slowly over time than the patterns

in regions representing sensory information. To quantify the speed of pattern change in a given ROI,

we obtained the correlation of the pattern at every time point (TR) with itself at every other time

point. (As for our main analysis, the BOLD time course of every voxel was smoothed using a moving

average filter of 5 TRs. This temporal smoothing was used as a de-noising technique and did not

affect the results.) We then averaged the auto-correlation curves across TRs to obtain a mean auto-

correlation function for every region in every participant. The more rapidly a pattern changes over
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time, the more sharply the auto-correlation should decrease as we move away from 0. To quantify

this, we defined the Full-Width Half-Maximum (FWHM) of the auto-correlation curve as the number

of time points (TRs) for which the auto-correlation was equal to or greater than half its maximum

value (the maximum was always 1.)

To compare the speed of pattern change in the regions we found (right entorhinal cortex and left

caudal ACC) with regions involved in auditory and language processing, we performed a paired Wil-

coxon signed rank test on the FWHM values across participants. The p-values from this test were

subjected to multiple comparisons correction using FDR.

Since the anatomical masks we used varied substantially in size, we sought to ensure that differ-

ences in the speed of pattern change were not due to differences in ROI size. For this purpose, we

performed the same analysis after regressing the vector of ROI sizes out of the vector of FWHM val-

ues for every participant.

Since the above regression would only account for a linear effect of ROI size on the speed of pat-

tern change, we additionally performed a univariate analysis that calculated the auto-correlation

function for each voxel individually. The auto-correlation curve was obtained by correlating the

BOLD time course of every voxel with itself at all possible lags. The mean auto-correlation for an ROI

was obtained by averaging the auto-correlation curves across all the voxels in that ROI. The FWHM

values were then calculated in the same manner as above for every ROI in every participant.

Replication of Jenkins and Ranganath (2010) ’coarse temporal memory’
fMRI analysis
As in Jenkins and Ranganath (2010), we correlated each voxel’s activity during encoding of a clip

with the accuracy of a participant’s placement of that clip on the timeline. Voxel activity was aver-

aged over a 5-TR window centered on the mid-point of the clip. For each participant, the estimated

clip position on the timeline was regressed against actual position. Accuracy was defined as the neg-

ative error, which was the absolute value of the residual for a clip. Within participants, voxel activity

was then correlated with accuracy across all clips, and the Pearson’s r score was Fisher-transformed.

As for the within-participant searchlight analysis, transformed r score maps were registered to 3mm

MNI space, and FSL’s randomise was used to control the FWE rate.
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O’Reilly JX, Schüffelgen U, Cuell SF, Behrens TE, Mars RB, Rushworth MF. 2013. Dissociable effects of surprise
and model update in parietal and anterior cingulate cortex. PNAS 110:E3660–3669. doi: 10.1073/pnas.
1305373110, PMID: 23986499

Pelli DG. 1997. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial
Vision 10:437–442. doi: 10.1163/156856897X00366, PMID: 9176953

Pollatos O, Laubrock J, Wittmann M. 2014. Interoceptive focus shapes the experience of time. PLoS ONE 9:
e86934. doi: 10.1371/journal.pone.0086934, PMID: 24489807

Polyn SM, Kahana MJ. 2008. Memory search and the neural representation of context. Trends in Cognitive
Sciences 12:24–30. doi: 10.1016/j.tics.2007.10.010, PMID: 18069046

Poppenk J, Norman KA. 2012. Mechanisms supporting superior source memory for familiar items: a multi-voxel
pattern analysis study. Neuropsychologia 50:3015–3026. doi: 10.1016/j.neuropsychologia.2012.07.010,
PMID: 22820636

Poppenk J, Norman KA. 2014. Briefly cuing memories leads to suppression of their neural representations.
Journal of Neuroscience 34:8010–8020. doi: 10.1523/JNEUROSCI.4584-13.2014, PMID: 24899722

Poynter WD. 1983. Duration judgment and the segmentation of experience. Memory & Cognition 11:77–82.
doi: 10.3758/BF03197664, PMID: 6855562

Ranganath C, Ritchey M. 2012. Two cortical systems for memory-guided behaviour. Nature Reviews
Neuroscience 13:713–726. doi: 10.1038/nrn3338, PMID: 22992647

Sahakyan L, Smith JR. 2014. “A long time ago, in a context far, far away”: Retrospective time estimates and
internal context change. Journal of Experimental Psychology: Learning, Memory, and Cognition 40:86–93.
doi: 10.1037/a0034250

Schapiro AC, Kustner LV, Turk-Browne NB. 2012. Shaping of object representations in the human medial
temporal lobe based on temporal regularities. Current Biology 22:1622–1627. doi: 10.1016/j.cub.2012.06.056,
PMID: 22885059

Shapleske J, Rossell SL, Woodruff PW, David AS. 1999. The planum temporale: a systematic, quantitative review
of its structural, functional and clinical significance. Brain Research Reviews 29:26–49. doi: 10.1016/S0165-0173
(98)00047-2, PMID: 9974150

Shenhav A, Botvinick MM, Cohen JD. 2013. The expected value of control: an integrative theory of anterior
cingulate cortex function. Neuron 79:217–240. doi: 10.1016/j.neuron.2013.07.007, PMID: 23889930

Silbert LJ, Honey CJ, Simony E, Poeppel D, Hasson U. 2014. Coupled neural systems underlie the production
and comprehension of naturalistic narrative speech. PNAS 111:E4687–E4696. doi: 10.1073/pnas.1323812111,
PMID: 25267658

Sled JG, Zijdenbos AP, Evans AC. 1998. A nonparametric method for automatic correction of intensity
nonuniformity in MRI data. IEEE Transactions on Medical Imaging 17:87–97. doi: 10.1109/42.668698, PMID:
9617910

Smith SM. 2002. Fast robust automated brain extraction. Human Brain Mapping 17:143–155. doi: 10.1002/hbm.
10062, PMID: 12391568

Stephens GJ, Honey CJ, Hasson U. 2013. A place for time: the spatiotemporal structure of neural dynamics
during natural audition. Journal of Neurophysiology 110:2019–2026. doi: 10.1152/jn.00268.2013, PMID: 23
926041

Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B. 2004. A hybrid approach to the skull
stripping problem in MRI. NeuroImage 22:1060–1075. doi: 10.1016/j.neuroimage.2004.03.032, PMID: 1521957
8

Ségonne F, Pacheco J, Fischl B. 2007. Geometrically accurate topology-correction of cortical surfaces using
nonseparating loops. IEEE Transactions on Medical Imaging 26:518–529. doi: 10.1109/TMI.2006.887364,
PMID: 17427739

Theiler J, Eubank S, Longtin A, Galdrikian B, Doyne Farmer J, Farmer JD. 1992. Testing for nonlinearity in time
series: the method of surrogate data. Physica D: Nonlinear Phenomena 58:77–94. doi: 10.1016/0167-2789(92)
90102-S

Wiener M, Turkeltaub P, Coslett HB. 2010. The image of time: a voxel-wise meta-analysis. NeuroImage 49:1728–
1740. doi: 10.1016/j.neuroimage.2009.09.064, PMID: 19800975

Wilson DI, Langston RF, Schlesiger MI, Wagner M, Watanabe S, Ainge JA. 2013b. Lateral entorhinal cortex is
critical for novel object-context recognition. Hippocampus 23:352–366. doi: 10.1002/hipo.22095, PMID: 233
89958

Wilson DI, Watanabe S, Milner H, Ainge JA. 2013a. Lateral entorhinal cortex is necessary for associative but not
nonassociative recognition memory. Hippocampus 23:1280–1290. doi: 10.1002/hipo.22165, PMID: 23836525

Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. 2014. Permutation inference for the general
linear model. NeuroImage 92:381–397. doi: 10.1016/j.neuroimage.2014.01.060, PMID: 24530839

Lositsky et al. eLife 2016;5:e16070. DOI: 10.7554/eLife.16070 39 of 40

Research article Neuroscience

http://dx.doi.org/10.1016/j.neuron.2014.10.013
http://www.ncbi.nlm.nih.gov/pubmed/25459409
http://dx.doi.org/10.1037/0033-295X.95.4.434
http://dx.doi.org/10.1002/hbm.1058
http://www.ncbi.nlm.nih.gov/pubmed/11747097
http://dx.doi.org/10.1097/WNR.0b013e3281668be1
http://www.ncbi.nlm.nih.gov/pubmed/17558291
http://dx.doi.org/10.1073/pnas.1305373110
http://dx.doi.org/10.1073/pnas.1305373110
http://www.ncbi.nlm.nih.gov/pubmed/23986499
http://dx.doi.org/10.1163/156856897X00366
http://www.ncbi.nlm.nih.gov/pubmed/9176953
http://dx.doi.org/10.1371/journal.pone.0086934
http://www.ncbi.nlm.nih.gov/pubmed/24489807
http://dx.doi.org/10.1016/j.tics.2007.10.010
http://www.ncbi.nlm.nih.gov/pubmed/18069046
http://dx.doi.org/10.1016/j.neuropsychologia.2012.07.010
http://www.ncbi.nlm.nih.gov/pubmed/22820636
http://dx.doi.org/10.1523/JNEUROSCI.4584-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24899722
http://dx.doi.org/10.3758/BF03197664
http://www.ncbi.nlm.nih.gov/pubmed/6855562
http://dx.doi.org/10.1038/nrn3338
http://www.ncbi.nlm.nih.gov/pubmed/22992647
http://dx.doi.org/10.1037/a0034250
http://dx.doi.org/10.1016/j.cub.2012.06.056
http://www.ncbi.nlm.nih.gov/pubmed/22885059
http://dx.doi.org/10.1016/S0165-0173(98)00047-2
http://dx.doi.org/10.1016/S0165-0173(98)00047-2
http://www.ncbi.nlm.nih.gov/pubmed/9974150
http://dx.doi.org/10.1016/j.neuron.2013.07.007
http://www.ncbi.nlm.nih.gov/pubmed/23889930
http://dx.doi.org/10.1073/pnas.1323812111
http://www.ncbi.nlm.nih.gov/pubmed/25267658
http://dx.doi.org/10.1109/42.668698
http://www.ncbi.nlm.nih.gov/pubmed/9617910
http://dx.doi.org/10.1002/hbm.10062
http://dx.doi.org/10.1002/hbm.10062
http://www.ncbi.nlm.nih.gov/pubmed/12391568
http://dx.doi.org/10.1152/jn.00268.2013
http://www.ncbi.nlm.nih.gov/pubmed/23926041
http://www.ncbi.nlm.nih.gov/pubmed/23926041
http://dx.doi.org/10.1016/j.neuroimage.2004.03.032
http://www.ncbi.nlm.nih.gov/pubmed/15219578
http://www.ncbi.nlm.nih.gov/pubmed/15219578
http://dx.doi.org/10.1109/TMI.2006.887364
http://www.ncbi.nlm.nih.gov/pubmed/17427739
http://dx.doi.org/10.1016/0167-2789(92)90102-S
http://dx.doi.org/10.1016/0167-2789(92)90102-S
http://dx.doi.org/10.1016/j.neuroimage.2009.09.064
http://www.ncbi.nlm.nih.gov/pubmed/19800975
http://dx.doi.org/10.1002/hipo.22095
http://www.ncbi.nlm.nih.gov/pubmed/23389958
http://www.ncbi.nlm.nih.gov/pubmed/23389958
http://dx.doi.org/10.1002/hipo.22165
http://www.ncbi.nlm.nih.gov/pubmed/23836525
http://dx.doi.org/10.1016/j.neuroimage.2014.01.060
http://www.ncbi.nlm.nih.gov/pubmed/24530839
http://dx.doi.org/10.7554/eLife.16070


Wittmann M, Simmons AN, Aron JL, Paulus MP. 2010. Accumulation of neural activity in the posterior insula
encodes the passage of time. Neuropsychologia 48:3110–3120. doi: 10.1016/j.neuropsychologia.2010.06.023,
PMID: 20600186

Wittmann M. 2013. The inner sense of time: how the brain creates a representation of duration. Nature Reviews.
Neuroscience 14:217–223. doi: 10.1038/nrn3452, PMID: 23403747

Zacks JM, Speer NK, Reynolds JR. 2009. Segmentation in reading and film comprehension. Journal of
Experimental Psychology: General 138:307–327. doi: 10.1037/a0015305, PMID: 19397386

Zakay D, Block RA. 2004. Prospective and retrospective duration judgments: an executive-control perspective.
Acta Neurobiologiae Experimentalis 64:319–328. PMID: 15283475

Zakay D, Tsal Y, Moses M, Shahar I. 1994. The role of segmentation in prospective and retrospective time
estimation processes. Memory & Cognition 22:344–351. doi: 10.3758/BF03200861, PMID: 8007836

Zarahn E, Aguirre GK, D’Esposito M. 1997. Empirical Analyses of BOLD fMRI Statistics. NeuroImage 5:179–197.
doi: 10.1006/nimg.1997.0263

Zou GY. 2007. Toward using confidence intervals to compare correlations. Psychological Methods 12:399–413.
doi: 10.1037/1082-989X.12.4.399, PMID: 18179351

Lositsky et al. eLife 2016;5:e16070. DOI: 10.7554/eLife.16070 40 of 40

Research article Neuroscience

http://dx.doi.org/10.1016/j.neuropsychologia.2010.06.023
http://www.ncbi.nlm.nih.gov/pubmed/20600186
http://dx.doi.org/10.1038/nrn3452
http://www.ncbi.nlm.nih.gov/pubmed/23403747
http://dx.doi.org/10.1037/a0015305
http://www.ncbi.nlm.nih.gov/pubmed/19397386
http://www.ncbi.nlm.nih.gov/pubmed/15283475
http://dx.doi.org/10.3758/BF03200861
http://www.ncbi.nlm.nih.gov/pubmed/8007836
http://dx.doi.org/10.1006/nimg.1997.0263
http://dx.doi.org/10.1037/1082-989X.12.4.399
http://www.ncbi.nlm.nih.gov/pubmed/18179351
http://dx.doi.org/10.7554/eLife.16070

