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ABSTRACT 

The human brain constantly recalls past experiences and anticipates future events, generating a 
continuous flow of thoughts. However, the neural mechanisms underlying the natural transitions 
and trajectories of thoughts during spontaneous memory recall and future thinking remain 
underexplored. To address this gap, we conducted a functional magnetic resonance imaging 
study using a think-aloud paradigm, where participants verbalize their uninterrupted stream of 
thoughts during rest. We found that transitions between thoughts, particularly those involving 
significant shifts in semantic content, activate the brain’s default and control networks. These 
neural responses to internally generated thought boundaries produce activation patterns 
resembling those triggered by external event boundaries. Moreover, interactions within and 
between these networks shape the overall semantic structure of thought trajectories: stronger 
functional connectivity within the medial temporal subsystem of the default network predicts 
greater variability in thoughts, while stronger connectivity between the control and core default 
networks is associated with reduced variability. Together, our findings highlight how the default 
and control networks guide the dynamic transitions and structure of naturally arising memory 
and future thinking. 
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INTRODUCTION  
 
The human mind is constantly engaged in recalling the past and predicting the future1,2. This 
creates a continuous stream of thoughts, where semantic memory about the world and oneself, 
episodic recollections of specific events, and future-oriented simulations are intertwined with 
information from the current environment3,4. Understanding the dynamics of this internally 
generated thought flow can provide crucial insights into how mental representations are 
organized in the brain and the neurocognitive processes involved in accessing them. For 
instance, when people recall memories in a continuous stream, the order and transitions 
between memories follow underlying semantic and temporal associations; related concepts or 
events tend to be recalled in succession5,6. In addition, transitions between distinct memories 
evoke characteristic neural responses7, similar to the neural dynamics observed when 
continuous external experiences are segmented and organized into discrete event 
representations8,9. However, these findings are primarily derived from studies involving the 
recall of experimentally induced experiences, such as reading word lists or watching movies5,7, 
where task demands control the flow of thoughts. What are the cognitive and neural 
mechanisms underlying the naturally occurring dynamics of memory and future thinking in real 
life? 
 Insights into the processes driving the naturalistic flow of memory and future thinking can 
be gained through the framework of spontaneous thought. Spontaneous thought refers to 
thoughts that arise and unfold freely, without being constrained by deliberate cognitive control or 
attention-capturing salient stimuli10. These thoughts mostly consist of personally relevant 
retrospective and prospective memories4,11, supported by semantic knowledge3, and often 
reflect the individual’s real-life goals and current concerns12,13. In addition, spontaneous 
thoughts share neural correlates with memory recall and future thinking1,14–16, particularly 
involving the default network17 and the frontoparietal control network18. The default network, 
including the hippocampus, is activated when thoughts are spontaneously generated and 
maintained19,20, such as during moments of self-reported mind-wandering21,22. The control 
network is also activated and functionally coupled with the default network during these 
instances21,23,24, and is thought to exert top-down control to guide the trajectory of thoughts10,25. 
 Despite this extensive research on spontaneous thought, the neurocognitive processes 
underlying the natural transitions and trajectory of spontaneous memory and future thinking 
remain underexplored. Common experimental paradigms, such as retrospective reports26,27 and 
experience sampling21,22,26, ask participants to report their thoughts after periods of rest or at 
intermittent intervals, limiting their ability to track the uninterrupted flow of ongoing thoughts. To 
address this limitation, recent studies have increasingly used the think-aloud paradigm, where 
participants verbalize their thoughts in real time during rest13,28–33, providing a more continuous 
and detailed report of naturalistic thoughts30. These studies have shown that thought trajectories 
are often clustered, with thoughts staying semantically related until transitioning to new topics, 
which creates boundaries between thoughts13,28,29. Moreover, the variability or stability of 
thought trajectories has been linked to distinct mental states33 and individual differences in 
personality and mental health29,32. However, the think-aloud paradigm has rarely been combined 
with neural recording techniques30, leaving important questions unanswered about how the 
brain generates and responds to these transitions and variability in thoughts.  
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 Here, we used the think-aloud paradigm with functional magnetic resonance imaging 
(fMRI) to investigate the neural correlates of dynamic transitions between thoughts in the flow of 
spontaneous memory and future thinking. Focusing on the brain’s default and control networks, 
we aimed to address the following questions: 1) What are the major organizing principles 
guiding transitions from one thought to the next? 2) What are the neural signatures of these 
thought transitions? and 3) How do brain networks interact to generate variable or stable 
thought trajectories? We collected think-aloud responses during 10-minute resting fMRI scans 
and segmented them into discrete thought units, each containing a single topic and thought 
category (e.g., episodic memory, future thinking). By analyzing transition probabilities and 
semantic similarity between consecutive thoughts, we found that semantic associations 
primarily guided transitions to related thoughts, although shared neurocognitive processes (i.e., 
thought categories) also played a role. Strong thought boundaries, characterized by semantic 
disconnections, activated the default network and adjacent control network areas, resulting in 
distributed activation patterns similar to those observed at boundaries between external events7. 
Finally, interactions between the default and control network regions shaped the overall 
semantic structure of thought trajectories. Specifically, stronger functional connectivity within the 
default network subsystem including the hippocampus predicted greater semantic variability in 
thoughts, while stronger connectivity between the default and control networks was associated 
with reduced variability. Together, our findings highlight the central role of the default and 
control networks in organizing the natural transition dynamics and structure of the unconstrained 
stream of spontaneous memory and future thinking. 
 
RESULTS 
 
Content and distribution of thoughts 
We first examined the content and distribution of various types of thoughts reported during the 
think-aloud fMRI session. Participants verbally described their stream of spontaneous thoughts 
for 10 minutes without interruption. Independent annotators manually segmented these 
responses into individual thought units based on changes in topic or category of thought (Fig. 
1a). The identified categories were: current state including sensations and feelings (e.g., “I feel 
some breeze.”), semantic memory about the world or other people (e.g., “Baltimore’s pretty 
cool.”), semantic memory about oneself (e.g., “I’m a senior now.”), episodic memory (e.g., “I was 
walking around earlier with my boyfriend.”), imagining or planning the future (e.g., “I got to go to 
the grocery store.”), and other thoughts not fitting into the listed categories. Each thought unit 
was also assigned a topic label summarizing the content of the thought. Fig. 1d visualizes the 
most frequent topic labels for each thought category, aggregated across all participants.       

Participants generated an average of 54.5 thoughts (SD = 19.9, range 19–118), 
producing an average of 1368.3 words (SD = 376.2, range 368–2268) excluding filler utterances 
(e.g., “Um, what else.”). Consistent with prior studies4,34, internally oriented thoughts involving 
memory and future thinking comprised the majority of spontaneous thoughts (M = 86.8%, SD = 
13.6; Fig. 1b). Among these, semantic memory about the world/others was the most frequently 
reported (M = 28.1%, SD = 12.4), followed by future thinking (M = 24.8%, SD = 19.6), semantic 
memory about oneself (M = 18.6%, SD = 11.0), and episodic memory recall (M = 15.3%, SD = 
11.2). On average, 11.8% of thoughts (SD = 13.3) described current states associated with 
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performing the think-aloud task in the MRI scanner. Only 1.4% of thoughts (SD = 4.1) could not 
be categorized into one of the five major categories, confirming that our thought categorization 
scheme effectively captured the content of the think-aloud responses. For descriptive statistics 
related to each thought category, including mean duration, word count, speech rate, and streak 
length, see Supplementary Table 1. 

 

 
 
Fig. 1. Think-aloud verbal responses. a. Participants verbally described their spontaneous flow of 
thoughts for 10 minutes inside the MRI scanner. Their speeches were transcribed and manually segmented 
into individual thought units, with each thought unit containing a single topic and corresponding to one of 
the following categories: current state, semantic memory about the world or other people, semantic memory 
about oneself, episodic memory, imagining or planning the future, and other uncategorized thoughts. b. 
Percentages of different thought categories among all thought units within each participant. Each colored 
dot represents an individual participant (N = 118 for all categories). Black circles indicate the mean across 
participants within each category. Error bars show the SEM across participants. c. Temporal distribution of 
different thought categories within the 10-minute think-aloud session. The upper panel shows the 
distribution of thought categories for five example participants. The lower panel shows the percentages of 
different thought categories averaged across participants for each time point (1 TR = 1.5-second window). 
d. Word clouds showing common topics for each major thought category. Topic labels were generated by 
the annotators who segmented the think-aloud responses. The 100 most frequent topic labels from the data 
combined across all participants are visualized using the WordCloud Python package (version 1.9.3). More 
frequent topics are shown in larger fonts.        

 
The temporal distribution of thought categories over the 10-minute think-aloud session 

showed considerable individual variability (Fig. 1c, upper panel). To examine the group-level 
temporal distribution, we computed the proportion of participants who reported each thought 
category in each 1-TR (1.5 second) time window (Fig. 1c, lower panel). The thought categories 
were generally evenly distributed throughout the session, except that participants 
disproportionately reported thoughts describing the current state at the beginning of the scan. 
Specifically, current states comprised 57.6% of the first thoughts reported, suggesting that 
participants’ attention was initially captured by the salient external environment (i.e., being in the 
MRI scanner) before internally oriented thoughts emerged.  
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Brain activation for different thought categories 
We next examined brain activation associated with different categories of thoughts. First, we 
conducted a whole-brain analysis to identify the brain areas recruited during spontaneous 
memory recall and future thinking. For each cortical parcel from the Schaefer 400-parcel atlas35, 
we performed paired-samples t-tests comparing the mean activation of each of the four 
internally oriented thought categories against the current state category. The resulting group-
level contrast maps are shown in Figs. 2a and 2b (Bonferroni corrected, p < .05). Consistent 
with prior findings16,36, the medial and lateral parietal cortices within the default network were 
more strongly activated during the description of internally oriented thoughts compared to the 
current state. This default network activation was more pronounced during episodic recall and 
future thinking (Fig. 2b) compared to describing generic semantic memory (Fig. 2a), highlighting 
its involvement in mental time travel and constructive simulation17,37,38. In contrast, the temporo-
parietal junction, which overlaps with the salience/ventral attention network, was more strongly 
activated during the current state compared to the other categories. For the list of all 
suprathreshold parcels from each contrast, see Supplementary Tables 2-5. 
  

 
 
Fig. 2. Univariate activation during memory recall and future thinking. a. Whole-brain t-statistic maps 
of cortical parcels showing higher or lower activation while describing semantic memory about the world or 
other people (top) or about oneself (bottom), compared to describing the current state. b. Whole-brain t-
statistic maps of cortical parcels showing higher or lower activation while describing episodic memory (top) 
or future-oriented thoughts (bottom), compared to describing the current state. In both a and b, the t-statistic 
maps are displayed on the lateral (left) and medial (right) surfaces of the left hemisphere of the inflated 
fsaverage6 template brain. Parcels with significantly higher activation compared to the current state are 
shown in red, while those with significantly lower activation are shown in blue. The statistical significance 
of each contrast (p < .05) was Bonferroni corrected across the 400 parcels in the Schaefer atlas35. 
Supplementary Tables 2-5 provide the lists of suprathreshold parcels from both hemispheres. c. Mean 
blood oxygenation level-dependent (BOLD) signal for each thought category in the posterior medial cortex 
(PMC; top) and the hippocampus (bottom). Each colored dot represents an individual participant (N = 62, 
75, 72, 73, and 72 for current, semantic-world, semantic-self, episodic, and future categories, respectively). 
Black circles indicate the mean across participants within each category. Error bars show the SEM across 
participants. *p < .05, **p < .01, ***p < .001 (uncorrected). 
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Additionally, we examined the activation levels for different thought categories in two 
subregions of the default network: the posterior medial cortex (PMC) and the hippocampus (Fig. 
2c). Both regions have been frequently implicated in memory retrieval, future thinking, and the 
generation of spontaneous thoughts16,36. Mean activation significantly varied across different 
thought categories in both PMC (F(4,224) = 22.72, p < .0001, ηp

2 = .29) and the hippocampus 
(F(4,224) = 5.28, Greenhouse-Geisser corrected p = .0017, ηp

2 = .09). In PMC, all internally 
oriented thought categories, except for semantic memory about oneself, showed higher 
activation compared to the current state (ts > 2.02, ps < .05, Cohen’s ds > .37). Mirroring the 
whole-brain analysis results, episodic recall and future thinking showed higher activation than 
semantic memory about oneself or the world (ts > 4.07, ps < .0002, Cohen’s ds > .65). Among 
these, future thinking activated PMC the most, with activation greater than episodic recall (t(70) 
= 3.73, p = .0004, Cohen’s d = .61, 95% CI = [.04, .12]). In the hippocampus, all internally 
oriented thought categories showed higher activation compared to the current state (ts > 2.7, ps 
< .01, Cohen’s ds > .50). However, there were no significant differences between the internally 
oriented thought categories themselves (ts < 1.91, ps > .06, Cohen’s ds < .32).   
 
Transitions between thoughts 
An important characteristic of the continuous flow of thoughts is that the mind continually moves 
from one thought to another3,28,39, switching between topics and categories (Fig. 1c). What 
principles underlie the dynamics of these thought transitions? Are there specific mental states 
that trigger spontaneous memory recall and future thinking? One possibility is that a thought 
may be evoked by another thought sharing similar neurocognitive processes, such as when 
memory retrieval is more likely to follow previous memory retrieval than the encoding of new 
information40–42. In this context, a thought is likely to be followed by another from the same 
category, leading to temporally clustered thought categories. To test this idea, we employed a 
Markov chain approach following prior studies29,43,44, and computed transition probabilities 
across the six thought categories including the “other” category (Fig. 3a). We calculated these 
probabilities between individual sentences rather than thought units to avoid bias that arises 
from using category transitions to define thought unit boundaries. Consistent with our prediction, 
the probability of a thought category transitioning to itself (i.e., the diagonal values of the 
transition probability matrix) was higher than expected by chance in all thought categories 
except for the “other” category (ts > 12.78, ps < .0001, Cohen’s ds > 1.23).  
 Another potential major organizing factor in the chain of thoughts is semantic relations. 
Models of episodic and semantic memory search5,45,46 and spontaneous thought13,39 suggest 
that shared meanings can cue semantically associated thoughts. To test this, we measured 
semantic similarity between thought units using a natural language processing technique28,31,33, 
defining it as the cosine similarity between text embedding vectors representing each thought 
(Fig. 3b). Supporting the semantic association hypothesis, we found that a thought was 
semantically more similar to its immediate consecutive thoughts (lags -1 and 1) than to more 
temporally distant thoughts (lags -15 and 15) across all thought categories (ts > 9.98, ps 
< .0001, Cohen’s ds > 1.22; Fig. 3c). The semantic association between consecutive thoughts 
was particularly stronger for internally oriented thought categories including memory and future 
thinking, compared to the current state category (ts > 4.41, ps < .0001, Cohen’s ds > .57). 
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Fig. 3. Transitions between thoughts. a. Sentence-level transition probability between different thought 
categories. The rows and columns of the matrix represent the current and next categories, respectively. 
The numbers in the matrix indicate transition probabilities for each category pair, averaged across 
participants. The colormap of the matrix indicates the t-statistics from one-sample t-tests against the chance 
probability (i.e., the overall proportion of the next category among all sentences within each participant). 
Transitions that occur more frequently than chance are shown in red, while those that occur less frequently 
than chance are shown in blue. *p < .05 (Bonferroni corrected). b. Measuring semantic similarity between 
thought units. Each thought unit was converted to a text embedding vector using the Sentence 
Transformers Python module (version 2.2.0). Semantic similarity between thoughts was defined as the 
cosine similarity between their embedding vectors. c. Semantic similarity as a function of the temporal 
distance from a target thought unit in each thought category. Lags are measured in units of thought, with 
lag = 0 representing the target thought. Negative and positive lags indicate thoughts that occurred before 
and after the target thought, respectively. Solid lines indicate the mean across participants (N = 98, 117, 
113, 113, and 112 for current, semantic-world, semantic-self, episodic, and future categories, respectively). 
Shaded areas indicate the SEM across participants. d. Measuring thought boundary agreement scores 
from think-aloud transcripts. Independent coders assigned the same numbers to consecutive 
sentences/clauses describing a single thought. Thought boundaries (red bars) were detected when the 
thought identification numbers changed. Boundary agreement scores were defined as the proportion of 
coders who identified each moment as a thought boundary. e. Mean boundary agreement scores for 
different types of thought transitions. f. Mean semantic similarity between pre- and post-boundary thoughts 
for different types of thought transitions. In both e and f, each colored dot represents an individual participant 
(N = 117, 118, and 117 for category change, topic change, and both change conditions, respectively). Black 
circles indicate the mean across participants within each transition type. Error bars show the SEM across 
participants. ***p < .001 (uncorrected). 
 

If both shared neurocognitive states (i.e., thought categories) and semantic associations 
affect transitions between thoughts, which factor has a greater impact? To address this 
question, we compared thought boundaries involving category changes with those involving 
topic changes (Fig. 1a) in terms of their perceived disconnectedness. If semantic associations 
play a more significant role in the flow of thoughts, then changes in topics (e.g., shifting from 
episodic recall about a term paper to episodic recall about a dog) will be perceived as stronger 
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boundaries than changes in general thought categories (e.g., shifting from episodic recall about 
a dog to semantic memory about the dog), and vice versa. To independently measure the 
perceived strength of boundaries between thoughts, we had a separate group of human coders 
read the think-aloud transcripts and identify moments when one thought transitioned to another 
(Fig. 3d). Critically, they were instructed to use their best subjective judgment based on any 
criteria and were not specifically told to consider changes in thought categories or topics. The 
measure of boundary strength was boundary agreement scores, computed as the proportion of 
coders who identified each moment as a thought boundary.  

The results suggested that semantic associations may play a more crucial role than 
thought categories in defining thought boundaries. Boundary agreement scores varied across 
different types of thought boundaries (Fig. 3e; F(2,230) = 501.48, p < .0001, ηp

2 = .81), with 
higher agreement observed at boundaries involving both topic and category changes (t(115) = 
28.67, p < .0001, Cohen’s d = 3.00, 95% CI = [.39, .45]), or topic changes alone (t(116) = 24.06, 
p < .0001, Cohen’s d = 2.27, 95% CI = [.32, .38]), compared to those involving only category 
changes. This pattern was mirrored in the semantic similarity between pre- and post-boundary 
thoughts: semantic similarity was lower at boundaries involving both topic and category changes 
(t(115) = 15.29, p < .0001, Cohen’s d = 1.74, 95% CI = [.09, .12]) and topic changes alone 
(t(116) = 5.57, p < .0001, Cohen’s d = .61, 95% CI = [.03, .05]), compared to those involving 
only category changes (Fig. 3f). Furthermore, boundary agreement was negatively correlated 
with semantic similarity between consecutive thoughts within each participant (mean r = -.35, 
SD = .16; one-sample t-test against zero: t(116) = -23.75, p < .0001, Cohen’s d = 2.20, 95% CI 
= [-.37, -.32]), confirming that changes in semantic content critically influenced thought 
boundary perception.   
 
Neural responses at major thought transitions  
Although internally oriented thoughts generally transition to semantically related ones, shifts to 
unrelated topics occasionally occur, creating salient boundaries28,47. What are the neural 
signatures of these prominent boundaries between thoughts? While neural responses at event 
boundaries driven by changes in external stimuli have been studied extensively48–50, internally-
driven boundaries between mental contexts have rarely been investigated7,51. To characterize 
the neural responses at boundaries between thoughts, we focused our analysis on the strongest 
boundaries, defined by a boundary agreement score of 1 (pre- and post-boundary thought 
semantic similarity: M = .19, SD = .08). Among these, 80.7% involved transitions to one of the 
four memory/future thinking categories. Supplementary Table 6 provides a breakdown of the 
percentages for specific thought category pairs that preceded and followed the strong thought 
boundaries.   
 We began by identifying the brain areas activated at strong thought boundaries. We 
performed a whole-brain univariate analysis, contrasting the average activation during boundary 
periods with that during non-boundary periods (Fig. 4a). A boundary period was defined as a 6-
second window following the offset of a pre-boundary thought. A non-boundary period was 
defined as a 6-second window in the middle of a thought lasting longer than 15 seconds. 
Greater activation during boundary periods, compared to non-boundary periods, was observed 
primarily in the medial frontal and parietal areas of the default network and control network. In 
contrast, greater activation during non-boundary periods was observed in the lateral frontal 
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areas associated with speech generation and areas around the auditory cortex, reflecting the 
effect of a temporary pause in speech at thought boundaries. For the list of all suprathreshold 
parcels, see Supplementary Table 7. 
  

 
 
Fig. 4. Neural responses at thought boundaries. a. Whole-brain t-statistic map of the univariate contrast 
between strong boundary (boundary agreement = 1) and non-boundary periods. Parcels with significantly 
higher activation during strong boundary periods compared to non-boundary periods are shown in red, 
while those with significantly lower activation are shown in blue. Statistical significance (p < .05) was 
Bonferroni corrected across all parcels. White outlines indicate the auditory cortex and the PMC ROIs, 
respectively. b. Mean PMC (left) and hippocampus (right) activation time courses aligned at different types 
of thought boundaries. Time zero for the non-boundary condition represents the middle of thoughts longer 
than 15 seconds. For other conditions, time zero represents the offset of the pre-boundary thought. Solid 
lines indicate the mean across participants (N = 75 for all conditions). Shaded areas indicate the SEM 
across participants. Asterisks above the x-axis indicate time points where activation for strong boundaries 
is significantly higher than non-boundaries after Bonferroni correction (p < .05). c. Boundary pattern 
similarity analysis. For each region, we computed the mean activation pattern of between-movie boundaries 
from the movie-watching phase of our prior study7. This template pattern was correlated with the mean 
activation patterns of strong thought boundaries (red bars) and non-boundary periods (gray bars) during 
think-aloud. d. Whole-brain t-statistic map of boundary-specific pattern similarity. Parcels are shown in red 
if their between-movie boundary patterns were more similar to their strong thought boundary patterns than 
to the non-boundary patterns. The map is masked to only include areas that showed positive correlations 
between the between-movie boundary patterns and the strong thought boundary patterns. Statistical 
significance (p < .05) was Bonferroni corrected across all parcels. e. Boundary pattern similarity in PMC. 
The think-aloud strong thought boundary and non-boundary patterns were correlated with the mean 
activation patterns of between-movie boundary periods (left panel) or silent periods (right panel) from the 
movie watching phase7. Each colored dot represents an individual participant (N = 75 for all conditions). 
Black circles indicate the mean across participants. Error bars show the SEM across participants. *p < .05 
(uncorrected).  
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We further examined the activation time course in the PMC and hippocampus ROIs for 
different types of thought boundaries (Fig. 4b). PMC showed significant activation from 4.5 to 
10.5 seconds following strong thought boundaries, compared to the non-boundary time course 
aligned to the middle of thoughts (ts > 4.27, ps < .0001, Cohen’s ds > .66). The boundary 
responses in PMC were also scaled with the strength of thought boundaries. Boundaries 
involving only topic changes (boundary agreement M = .60, SD = .18) evoked weaker 
responses compared to the strong boundaries with agreement scores of 1. Boundaries involving 
only thought category changes (boundary agreement M = .25, SD = .13) resulted in even 
weaker responses. The hippocampus showed a slightly higher response at 4.5 seconds 
following strong boundaries compared to non-boundaries, which did not reach statistical 
significance (t(74) = 1.96, p = .054, Cohen’s d = .37, 95% CI = [-.00, .08]). 
 Next, we analyzed the distributed activation patterns at strong thought boundaries. In a 
prior study7, we identified a distinctive activation pattern associated with major mental context 
transitions within the default network and the adjacent control network, particularly around PMC. 
Specifically, we observed highly similar activation patterns at boundaries between different 
movies while participants watched a series of films. These consistent patterns also reappeared 
at boundaries between memories of the movies during continuous verbal recall. We predicted 
that this major mental context transition pattern would generalize to strong thought boundaries 
during think-aloud sessions. 

To test this, we conducted a whole-brain pattern similarity analysis (Fig. 4c). For each 
cortical parcel, we correlated the mean activation pattern at strong thought boundaries during 
think-aloud sessions with the mean activation pattern at between-movie boundaries from the 
movie watching phase of our prior study7. We also correlated the mean non-boundary activation 
pattern during think-aloud with the same between-movie boundary pattern. As predicted, the 
major mental context transition pattern was observed in parcels within and around PMC. Figure 
4d illustrates these parcels, where 1) strong thought boundary patterns were positively 
correlated with between-movie boundary patterns, and 2) this correlation was greater than the 
correlation between non-boundary patterns and between-movie boundary patterns. 
Supplementary Figure 1 shows separate whole-brain maps of positive pattern similarities 
between thought boundaries and movie boundaries (Suppl. Fig. 1a) and significant differences 
between strong thought boundaries and non-boundaries (Suppl. Fig. 1b). Similar results were 
observed within the PMC ROI (Fig. 4e, left panel), showing a positive correlation between the 
strong thought boundary pattern and the between-movie boundary pattern (t(74) = 2.22, p 
= .029, Cohen’s d = .26, 95% CI = [.01, .11]). This correlation was also greater than the 
correlation between the non-boundary pattern and the between-movie boundary pattern (t(74) = 
2.29, p = .025, Cohen’s d = .41, 95% CI = [.01, .17]).       
 Is this thought transition pattern simply driven by pauses in speech at boundaries? 
Strong thought boundaries in the current study and between-movie boundaries in ref.7 share 
low-level auditory features, as both involve brief periods of silence. Indeed, parcels around the 
auditory cortex also showed a positive correlation between strong thought boundary patterns 
and between-movie boundary patterns (Fig. 4d). To rule out this possibility, we compared the 
activation patterns at strong thought boundaries with those during periods of silence in the 
auditory cortex and PMC ROIs. The silence pattern was derived from the movie-watching phase 
of ref.7 by averaging silent moments within the movie stimuli. In the auditory cortex (Suppl. Fig. 
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2), the silence pattern was positively correlated with the strong thought boundary pattern (t(74) 
= 4.85, p < .0001, Cohen’s d = .56, 95% CI = [.07, .18]) but negatively correlated with the non-
boundary pattern (t(74) = -3.17, p = .002, Cohen’s d = .37, 95% CI = [-.10, -.02]), confirming that 
its thought boundary pattern was driven by the absence of sound. In contrast, in PMC (Fig. 4e, 
right panel), the silence pattern was not correlated with the strong thought boundary pattern 
(t(74) = .75, p = .46, Cohen’s d = .09, 95% CI = [-.03, .07]), but was positively correlated with the 
non-boundary pattern (t(74) = 2.39, p = .019, Cohen’s d = .28, 95% CI = [.01, .10]). Thus, the 
internally-driven boundary pattern in PMC is unlikely to be driven by pauses in speech. 
 
Thought structure and brain connectivity 
So far, we have focused on transitions between immediately neighboring thoughts. However, 
the dynamics of thought can also be reflected in the overall semantic structure, including the 
relationships between temporally distant thoughts, such as the recurrence of similar topics over 
time. Indeed, individuals’ thought streams vary in how divergent or focused their content is10,33. 
What are the neural underpinnings of this variability or stability in thoughts? A prominent 
perspective on spontaneous thought hypothesizes that various large-scale brain networks play 
distinct roles in shaping the structure of internally oriented thoughts10. The medial temporal lobe 
subsystem of the default network may be responsible for generating variable thoughts, while the 
core default network subsystem likely constrains thoughts toward personally significant 
information52. The frontoparietal control network (FPCN) may interact with other networks to 
help sustain goal-relevant thoughts, thereby increasing thought stability33.   
 To test this idea, we explored the relationship between functional connectivity within and 
between large-scale brain networks and the overall semantic structure of think-aloud responses. 
The semantic structure was quantified using the average clustering coefficient of the semantic 
network of thoughts, where nodes represented individual thought units and edges represented 
the semantic similarity between these thoughts (Fig. 5a). Higher clustering coefficients indicated 
more stable and focused thought structures, while lower clustering coefficients indicated more 
variable and divergent thought structures (Fig. 5b). Figure 5c shows the distribution of average 
clustering coefficients across all participants (M = .18, SD = .05). For the functional connectivity 
analysis, we focused on Control Network B, Default Network A, and Default Network C as 
defined in the 17-network version of the Schaefer atlas35, with the hippocampus included in 
Default Network C (Fig. 5d). These networks correspond, respectively, to the FPCN, the core 
default network subsystem, and the medial temporal lobe subsystem of the default network, as 
outlined in ref.10.  

As expected, interaction between the control and default networks was associated with 
semantic stability in think-aloud responses. Specifically, functional connectivity between Control 
Network B and Default Network A was positively correlated with thought network clustering 
coefficients across participants (r(75) = .24, p = . 041, 95% CI = [.01, .44]; Fig. 5e). Functional 
connectivity between Control Network B and Default Network C was also numerically positively 
correlated with clustering coefficients, although this relationship did not reach statistical 
significance (r(75) = .13, p = . 256, 95% CI = [-.10, .35]). In contrast, within-network functional 
connectivity computed across the subregions of Default Network C was negatively correlated 
with thought network clustering coefficients (r(75) = -.29, p = . 013, 95% CI = [-.48, -.06]; Fig. 
5f), supporting its role in generating thought variability10. There was no significant correlation 
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between clustering coefficients and the connectivity between Default Network A and Default 
Network C (r(75) = -.04, p = . 729, 95% CI = [-.27, .19]). 
 

 
 
Fig. 5. Thought network structure and functional connectivity. a. A thought network where nodes 
represent thought units, and edge weights represent semantic similarity between thoughts. b. Example 
thought networks with three different levels of clustering (average clustering coefficients = 0.37, 0.27, and 
0.19). For visualization, edge weights were thresholded at a cosine similarity of 0.3. In both a and b, node 
size and edge thickness are proportional to normalized degree and edge weights, respectively. Different 
node colors represent different thought categories (pink = current; green = semantic-world; light green = 
semantic-self; blue = episodic; light blue = future-oriented). c. Distribution of the average clustering 
coefficients of thought networks generated from the think-aloud responses of all 118 participants included 
in the behavioral analyses. Thought network edge weights were thresholded at zero. d. Subregions of 
Control Network B (red), Default Network A (green), and Default Network C (blue) as defined in the 17-
network version of the 400-parcel Schaefer atlas35. The subregions are displayed on the lateral (top) and 
medial (bottom) surfaces of the inflated fsaverage6 template brain. e. Pearson correlation between the 
average clustering coefficients of thought networks and the between-network functional connectivity 
between Control Network B and Default Network A. f. Pearson correlation between the average clustering 
coefficients of thought networks and the within-network functional connectivity in Default Network C. In both 
e and f, gray dots represent each of the 75 participants included in fMRI analyses. Solid lines represent the 
best-fitting regression lines. g. Mean functional connectivity between the subregions of the three brain 
networks of interest (upper triangle) and the correlation between the functional connectivity and thought 
network clustering coefficients (lower triangle). Hipp = hippocampus; IPL = interior parietal lobule; PFCd = 
dorsal prefrontal cortex; PFCld = lateral dorsal prefrontal cortex; PFClv = lateral ventral prefrontal cortex; 
PFCm = medial prefrontal cortex; PFCmp = medial posterior prefrontal cortex; PHC = parahippocampal 
cortex; PMC = posterior medial cortex; Rsp = retrosplenial cortex; Temp = temporal lobe. +p < .1, *p < .05 
(uncorrected). 
 
 Additionally, we performed a post-hoc exploratory analysis to identify specific pairs of 
subregions whose functional connectivity correlates with the overall semantic structure of 
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thoughts (Fig. 5g, lower triangle). We found that connectivity between PMC in Default Network 
A and the lateral dorsal prefrontal, lateral ventral prefrontal, and medial posterior prefrontal 
cortex subregions in Control Network B was positively correlated with thought network clustering 
coefficients (r(75)s > .23, ps < .041). Connectivity between the temporal lobe subregion of 
Control Network B and the retrosplenial cortex in Default Network C was also positively 
correlated with clustering coefficients (r(75) = .25, p = .029, 95% CI = [.03, .45]). In contrast, 
within Default Network C, connectivity between the parahippocampal cortex (PHC) and the 
hippocampus, retrosplenial cortex, and inferior parietal lobule subregions was negatively 
correlated with thought network clustering coefficients (r(75)s < -.23, ps < .044). The strongest 
of these correlations was between PHC-hippocampus connectivity and clustering coefficients 
(r(75) = -.42, p = .0002, 95% CI = [-.59, -.21]), which survived Bonferroni’s correction for multiple 
comparisons. 
 
DISCUSSION   
 
The current study investigated the neural mechanisms underlying the dynamic flow of 
spontaneous memory recall and future thinking. Using a think-aloud paradigm, where 
participants continuously verbalized their thoughts during resting fMRI scans, we captured 
neural responses specifically linked to natural transitions between thoughts and the semantic 
structure of thought trajectories. Within the flow of thought, primarily consisting of retrospective 
and prospective memories, transitions predominantly occurred between semantically associated 
thoughts. Notably, significant shifts in the semantic content of thoughts created boundaries 
between them, activating core posterior-medial areas of the default and control networks. These 
boundary responses generated distributed activation patterns comparable to those evoked by 
boundaries between external events. Furthermore, functional connectivity within and between 
the default and control networks predicted the overall semantic variability and stability of thought 
trajectories, highlighting the crucial role of these large-scale networks in shaping the dynamics 
of spontaneous memory and future thinking.  

The think-aloud paradigm enabled us to identify brain regions involved in naturally 
arising memory and future thinking. Compared to thoughts focused on current feelings and 
sensations, these internally oriented thoughts—particularly episodic recall and future 
imagination—activated the default network including the hippocampus, medial frontal cortex, 
lateral parietal cortex, and PMC. This activation did not systematically correlate with behavioral 
measures such as thought duration, word count, or speech rate (Supplementary Table 1), 
suggesting that it reflects deeper cognitive processes rather than superficial features of speech 
or thought production. Prior studies using more controlled tasks have also implicated a similar 
set of regions in episodic memory retrieval15,16, mental simulation1, and self-referential 
thinking19,43, further supporting their role in constructing internal narratives53. In addition to the 
default network, spontaneous thought generation is known to engage broader neural systems, 
including regions involved in cognitive control21,23,24. However, we did not observe notable 
activation in the control network when compared to the current state category. While the current 
state category primarily captured thoughts about the immediate environment, the process of 
consciously accessing and verbalizing them within a continuous stream may demand a similar 
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level of cognitive control as memory and future thinking. This overlap could have diminished the 
contrast between current state and internally oriented thought categories.  

We found that both shared neurocognitive processes and semantic connections guide 
the transitions of spontaneous thoughts. Specifically, 1) thoughts tend to transition within the 
same thought category, and 2) consecutive thoughts show higher semantic similarity than 
temporally distant ones. This reflects a tendency for thoughts to remain stable for a period 
before switching to a new one, consistent with prior research describing the locally clustered 
structure of thought trajectories3,28,54. Additionally, topic transitions elicited stronger boundary 
perceptions and greater cortical activation than thought category transitions, suggesting that 
semantic connections play a more dominant role in driving spontaneous thought transitions. 
This finding reinforces the longstanding view that semantic associations provide an organizing 
framework for internal representations and can serve as retrieval cues3,5,39,46. That said, it is 
worth noting that thought category and semantic content may not be entirely separable. For 
example, in our study, the current state category predominantly involved semantic content 
related to the MRI scanning environment (Fig. 1d). A previous study27 has also reported 
correlations between temporal dimensions (e.g., past, future) and content-related dimensions 
(e.g., people, images) in spontaneous thought. Future research could further investigate how 
different thought categories and semantic content interact to influence transitions between 
thoughts.  

At strong thought boundaries marked by prominent shifts in thought content, midline 
default and control network regions are recruited, generating distributed activation patterns 
similar to those observed at externally-driven event boundaries. Neural responses to stimulus-
driven boundaries between external events have been extensively studied in the fields of 
perception and memory, as they reveal how the brain segments and encodes continuous 
experiences into discrete events8,49,50. However, responses to boundaries created by internal 
mental context transitions remain largely unexplored51,55. In a rare prior study7, we demonstrated 
that boundaries between memories of different movies during continuous narrated recall elicit 
stereotyped activation patterns in PMC and nearby areas, similar to those seen at stimulus-
driven movie boundaries during the initial viewing. The current study replicates and expands on 
these findings, applying them to boundaries between spontaneous internal narratives, which 
encompass broader semantic topics and exhibit more unconstrained dynamics. Our findings 
suggest that the boundary responses in the posterior medial areas represent a generalized 
signal of mental context transitions. This signal likely reflects internal task-switching 
demands56,57, which arise at the end of a thought to resolve competition among upcoming 
thoughts, allowing one to dominate conscious attention. Supporting this idea, the regions with 
heightened activation at thought boundaries overlapped with posterior-medial areas of the 
control network (Fig. 4a, Supplementary Table 7). These areas are known to play a key role in 
top-down cognitive control during task set changes58,59. However, this interpretation relies on 
reverse inference60, and further research is needed to fully understand the nature of cortical 
boundary responses in spontaneous thought.  

Despite robust cortical responses, we did not observe significant hippocampal activation 
at major thought boundaries. This was unexpected given the hippocampus’s well-established 
role in spontaneous thought generation10,47,61 and mental time travel36. Moreover, the 
hippocampus is consistently activated at externally-driven boundaries between naturalistic 
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events, supporting the successful encoding of these events49,62,63. Why, then, does the 
hippocampus not respond to thought boundaries? One possible explanation is the continuous 
demand for memory retrieval and thought generation inherent in the think-aloud task. This may 
lead to sustained hippocampal activation throughout most of the session, masking any 
responses to thought boundaries, if they exist. Indeed, the hippocampus showed consistently 
higher activation for memory and future thinking categories compared to the current state 
category (Fig. 2c). In contrast, during tasks that primarily involve encoding new external events, 
such as watching movies, the hippocampus may respond specifically to event boundaries by 
transiently retrieving the just-concluded event64. Thus, hippocampal responses differ between 
externally and internally driven mental context boundaries, despite similar cortical activation 
patterns.  

Our findings demonstrate the role of functional connectivity within and between large-
scale brain networks in shaping the semantic structure of spontaneous thought trajectories. This 
connectivity provides a potential neural basis for individual differences in thought dynamics, 
ranging from fleeting and freely flowing to more controlled and sustained patterns65. Consistent 
with the dynamic framework of spontaneous thoughts10, stronger interactions within the medial 
temporal lobe subsystem of the default network (DNMTL) were linked to greater thought 
variability, positioning it as a source of variability through associative cueing and pattern 
completion39. In contrast, increased coupling between the control network and the core 
subsystem of the default network (DNcore) was associated with thought stability, confirming the 
role of the control network in constraining thoughts toward goal-relevant content52. These 
findings also align with creativity research, which suggests that the default network facilitates 
divergent idea generation, while the control network monitors and evaluates these ideas for 
goal-relevance66. However, connectivity between DNMTL and DNcore did not correlate with thought 
structure, despite the DNcore’s proposed role in automatically constraining thoughts toward 
salient internal information10. This may be because automatic constraints can either increase or 
decrease thought variability depending on its nature52. For example, automatic constraints may 
reduce variability during rumination, when individuals fixate on negative thoughts or emotions. 
Conversely, they may increase variability by triggering shifts to salient but irrelevant thoughts 
when attempting to focus on goal-relevant topics.   

Although the think-aloud paradigm has significantly advanced our ability to capture the 
neural dynamics of the continuous flow of thoughts, investigating the fully unconstrained and 
spontaneous nature of real-world thought remains challenging. Spontaneous thoughts are 
deeply intertwined with real-life contexts and actions67, and the fixed setting of verbalizing 
thoughts in an MRI machine may restrict their natural contents and flow. Moreover, the 
presence of experimenters and the awareness of being recorded can lead to self-censorship or 
over-explanation, as indicated by the higher percentage of general semantic descriptions in our 
data (Fig. 1b, Semantic-world) compared to prior reports11. Even without social influences, the 
very act of consciously accessing and verbalizing thoughts could potentially alter the trajectory 
of spontaneous thinking68. Future research may explore how metacognition69 and the 
generation of external or internal speech70 affect the structure and transition dynamics of 
spontaneous memory and future thinking.  

In conclusion, our study uncovers the cognitive and neural processes underlying the 
spontaneous flow of retrospective and prospective memory, bridging the fields of memory and 
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spontaneous thought. Specifically, the default and control networks play a crucial role in thought 
transitions, and their interactions shape the overall structure of thought trajectories. 
Understanding these dynamics aids in decoding resting state neural activity26,27, which has been 
widely used to explore the neural underpinnings of both clinical conditions and basic cognitive 
processes. Furthermore, the unfolding of spontaneous thoughts over time reflects the 
organization of naturalistic thought and predicts individual differences in personality32,43,54, 
mental health20,29,71, and well-being72,73. By investigating the brain mechanisms driving thought 
dynamics, our findings offer insights for future research aimed at developing novel biomarkers 
and interventions for psychiatric disorders, as well as promoting creativity and emotional well-
being.    
 
METHODS 
 
The current study adheres to ethical regulations governing research involving human 
participants. All experimental procedures were in accordance with protocols approved by the 
Institutional Review Boards of Johns Hopkins Medicine and Homewood. 
 
Participants 
We recruited 126 healthy participants from the Johns Hopkins University community (76 
females, age 18 – 40 years, mean age 23.7 years). All participants were right-handed native 
English speakers and reported normal hearing as well as normal or corrected-to-normal vision. 
Informed consent was obtained following procedures approved by the Johns Hopkins Medicine 
Institutional Review Board. Participants received monetary compensation for their time.  

Of the 126 participants initially recruited, 8 were excluded from both behavioral and fMRI 
data analyses for the following reasons: poor quality of speech audio recordings (5 participants), 
scanning interruptions due to technical issues (2 participants), and failure to adhere to 
instructions (1 participant). An additional 43 participants were excluded from the fMRI data 
analysis due to: excessive head motion, defined as a mean framewise displacement greater 
than .5 mm (39 participants); anomalies in brain structure (2 participants); technical issues 
related to visual presentation using the projector (1 participant); and an unidentified artifact in 
the MRI data (1 participant). Consequently, 118 participants were included in behavioral data 
analyses (73 females, age 18 – 39 years, mean age 23.4 years), and 75 participants were 
included in fMRI data analyses (43 females, age 18 – 36 years, mean age 23.4 years). 
 
Study procedures 
Participants completed a single 10-minute think-aloud session in the MRI scanner, during which 
they verbally described their spontaneous flow of thoughts (Fig. 1a). They were instructed to 
continuously speak out loud whatever thoughts came to their minds, including but not limited to 
memories of past events, plans for the future, or any bodily sensations, sights, sounds, or other 
feelings that captured their attention during the experiment. Participants were instructed to let 
their thoughts flow freely and not force themselves to stick to a single topic. They were asked 
not to entertain the experimenter or explain their thoughts by providing background information. 
Participants were allowed to refrain from verbalizing private thoughts if they did not wish them to 
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be heard. Instead, they were instructed to briefly mention the topic of the thought and state that 
they did not want to share it (e.g., "It reminded me of my parents but I will not talk about it").  
 Participants began speaking when the word “begin” appeared in white text on a gray 
screen. After 2 seconds, the “begin” message disappeared, and a white fixation cross was 
presented at the center, remaining on the screen throughout the task. Participants were 
instructed to keep their eyes open and look at the fixation cross. However, they were not 
required to maintain fixation on the cross for the entire task, and their eye movements were not 
monitored. The visual stimuli were presented on the screen located behind the magnet bore and 
viewed via an angled mirror. Participants’ speech was recorded using an MR-compatible 
microphone (FOMRI II; Optoacoustics Ltd.). 
 In all but two participants, various tasks unrelated to the current study were performed 
following the think-aloud task. The remaining two participants performed the think-aloud task at 
the end of the scanning session, following the unrelated tasks. The unrelated tasks included 
listening to audio stories, generating word chains, watching screen recording videos, browsing 
the web, and verbally recalling memories. Different combinations of these tasks were performed 
in each scanning session, and the results from these tasks will be reported elsewhere.  

After the fMRI scanning session, participants received a link to a battery of online 
questionnaires asking about their personality traits, mental health, and demographic 
information. They were instructed to complete the questionnaires within two days following the 
fMRI session. Sixty-nine out of the 126 participants completed the questionnaires. Results from 
the questionnaires will be reported elsewhere. 
 
Behavioral data preprocessing 
The audio recording of each participant’s think-aloud response was transcribed either manually 
or automatically using Whisper (Large-v2 model; OpenAI) and subsequently manually 
corrected. Each transcript was segmented into sentences, and timestamps were identified for 
the beginning and end of each sentence. Transcribed sentences that ended before the 
beginning of the scan or began after the end of the scan were excluded from analysis. 

 The transcripts were further processed by 15 independent human annotators. Each 
transcript was handled by a single annotator, with each annotator processing an average of 7.9 
transcripts (range: 1 – 35). The annotators manually categorized each transcribed sentence into 
one of the following seven categories: 1) current state, action, or sensation during the 
experiment, 2) general knowledge or opinion about the world or other people (semantic-world), 
3) general knowledge or opinion about oneself (semantic-self), 4) memories of past events in 
specific times and places (episodic), 5) imagining or planning the future (future-oriented), 6) filler 
utterances without specific content (e.g., “Um, what else.”), and 7) other utterances that cannot 
be categorized as any of the above categories.  

The annotators also identified the topic of the thought described in each sentence and 
provided a short label of the topic (e.g., MRI scanning, cold weather, flu shot). To ensure 
consistency in topic labeling, the annotators were instructed to use the same label if the same 
topic was repeated within a transcript. In case either the thought category or the topic of the 
thought changed within a single sentence, the sentence was further broken down into multiple 
clauses, ensuring that no segment was coded as having more than one category or topic. 
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Consecutive sentences or clauses with the same category describing the same topic were 
combined to form a single ‘thought unit’ (Fig. 1a).  
 
Thought category transition probability  
Within each participant, we calculated transition probabilities between thought categories. 
These probabilities were computed between individual sentences rather than coarser thought 
units to avoid bias. Consecutive thought units were biased against belonging to the same 
category because transitions between thought categories were used to define their boundaries. 
Six thought categories were analyzed, excluding fillers: current state, semantic-world, semantic-
self, episodic, future-oriented, and other (Fig. 3a). For each category, we calculated the 
proportion of each of the six categories immediately following it. This resulted in a six-by-six 
transition probability matrix for each participant, where each row represents the current category 
and each column represents the next category. If a participant’s response did not contain a 
particular category, the transition probabilities from that category (i.e., the row for that category) 
were considered nonexistent and excluded from the analysis. We then tested whether specific 
transitions between categories occurred more frequently than expected by chance. For each 
pair of current and next categories in the transition probability matrix, we performed a two-tailed 
paired-samples t-test, comparing the transition probabilities to the overall proportion of the next 
category among all sentences generated within each participant.   
 
Semantic similarity between thoughts 
To quantify semantic similarity between thoughts, we employed a natural language processing 
technique that transforms text into embedding vectors. We used a pretrained model (all-mpnet-
base-v2) implemented in the Sentence Transformers Python module (version 2.2.0; 
https://www.sbert.net) to convert the transcribed text of each thought unit into a 768-dimensional 
vector. Semantic similarity between pairs of thought units was then defined as the cosine 
similarity between their respective embedding vectors (Fig. 3b). 

To examine the effect of temporal proximity on semantic similarity between thoughts, we 
computed the semantic similarity between each thought unit (i.e., target) and the 15 thoughts 
preceding and following the target within each participant (Fig. 3c). The semantic similarity as a 
function of lag from the target was averaged across all target thoughts within each of the five 
thought categories, excluding “filler” and “other”. To directly compare thoughts that are near and 
far from the target, we averaged the semantic similarity at lags 1 and -1 (“near”) and at lags 15 
and -15 (“far”) within each participant and thought category. We then performed two-tailed 
paired-samples t-tests for each category, using lag (near, far) as a within-participant factor.     

To compare the semantic similarity at different types of thought boundaries, we 
averaged the semantic similarity between consecutive thoughts within each type of boundary: 1) 
where only the category of thoughts changed, 2) where only the topic of thoughts changed, and 
3) where both the category and topic changed. The averaging was done for each participant. 
We then performed a one-way repeated-measures ANOVA with thought boundary type as a 
within-participant factor. 
 
Thought boundary agreement 
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To measure the strength of boundaries between thoughts without explicitly considering thought 
categories or topics, a separate group of human coders manually identified boundaries within 
the 118 fMRI participants’ think-aloud responses. We recruited 185 coders online from Sona 
and Prolific, compensating them with course credits or monetary rewards. An additional 19 
coders were excluded due to failure to follow instructions. Each coder read an average of 3.83 
think-aloud transcripts (range: 1 – 10), with each row corresponding to a sentence or clause 
containing a single thought category and topic. The coders were instructed to use their best 
subjective judgement to segment each transcript into individual thought units by assigning 
different numbers to rows representing different thoughts (Fig. 3d). The offset of the last 
sentence/clause of one thought before a new thought began was identified as the thought 
boundary. The coders also identified filler utterances that did not correspond to specific 
thoughts; changes to or from fillers were not considered as thought boundaries. Each transcript 
was segmented by an average of 6 coders (range: 5 – 8), and the proportion of coders who 
identified a moment as a boundary (i.e., boundary agreement) served as a measure of 
boundary strength.  

To compare boundary strength at different types of thought boundaries (i.e., category 
change only, topic change only, both change) as defined by the manual category and topic 
coding, we averaged the boundary agreement scores within each participant for each boundary 
type. We then performed a one-way repeated-measures ANOVA with thought boundary type as 
a within-participant factor. 
 
MRI data acquisition 
MRI scanning was conducted at the F. M. Kirby Research Center for Functional Brain Imaging 
at Kennedy Krieger Institute on a 3 Tesla Philips Ingenia Elition scanner with a 32-channel head 
coil. Functional images were acquired using a T2*-weighted multiband accelerated echo-planar 
imaging (EPI) sequence (TR = 1.5 s; TE = 30 ms; flip angle = 52°; acceleration factor = 4; 60 
oblique axial slices; grid size 112 × 112; voxel size 2 × 2 × 2 mm3). Fieldmap images were also 
acquired to correct for B0 magnetic field inhomogeneity (60 oblique axial slices; grid size 112 × 
112; voxel size 2 × 2 × 2 mm3). Whole-brain high-resolution anatomical images were acquired 
using a T1-weighted MPRAGE pulse sequence (150 axial slices; grid size 224 × 224; voxel size 
1 × 1 × 1 mm3). 
 
MRI data preprocessing 
MRI data collected during think-aloud sessions were first organized into the Brain Imaging Data 
Structure (BIDS) format using custom scripts. Preprocessing of high-resolution anatomical 
images and cortical surface reconstruction were performed using the recon-all pipeline of 
FreeSurfer74. Functional images were preprocessed using fMRIprep75 (version 21.0.2; 
RRID:SCR_016216) with default settings. Specifically, functional images were corrected for 
head motion and B0 magnetic inhomogeneity. Functional images were then coregistered to the 
anatomical image and resampled to the fsaverage6 template surface (for cortical analysis) and 
the MNI 152 volume space (for subcortical analysis). Additionally, functional images were 
smoothed (FWHM 4 mm) in the surface space using FreeSurfer’s mri_surf2surf and in the 
volume space using FSL’s SUSAN76 (Smoothing over Univalue Segment Assimilating 
Nucleus;). Nuisance regressors including linear and quadratic trends, six head motion 
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parameters (translation and rotation in the x, y, and z dimensions), and the average time 
courses of the whole-brain mask, cerebrospinal fluid, and white matter were then projected out 
from the smoothed data. The resulting time series were z-scored within each vertex or voxel 
across all volumes within the scanning run. Within each scanning run, the first 10 volumes were 
discarded. Motion outlier volumes (framewise displacement >= 1 mm), along with the two 
volumes immediately preceding and following each outlier, were also excluded from the 
analysis. 
 
Cortical parcellation and region of interest (ROI) definition 
For whole-brain activation and pattern similarity analyses, we used a cortical parcellation atlas 
based on functional connectivity patterns identified through fMRI35. The atlas divides the cortical 
surface into 400 parcels, with 200 parcels in each hemisphere, which are grouped into 17 
functional networks identified in a previous study76.  

For region-of-interest analyses, we defined the bilateral posterior-medial cortex (PMC) 
and the bilateral auditory cortex (Fig. 4a) by combining parcels from the 400-parcel atlas that 
correspond to the regions. The PMC ROI included parcels from the posterior cingulate cortex 
and precuneus within Default Network A. The auditory cortex ROI consisted of parcels around 
the primary and secondary auditory cortices within Somatomotor Network B (see 
Supplementary Table 8 for the list of parcels included in the ROIs). The bilateral hippocampus 
mask was obtained from the subcortical atlas (Aseg) provided by FreeSurfer, using the MNI 
volume space as reference. 

For functional connectivity analysis, we extracted individual subregions from three a 
priori functional networks of interest out of the 17 networks in the atlas: Control Network B, 
Default Network A, and Default Network C (Fig. 5d). Parcels corresponding to each subregion 
defined by the atlas were combined to form a single region. Control Network B consisted of 
subregions in the interior parietal lobule (IPL), dorsal prefrontal cortex (PFCd), lateral dorsal 
prefrontal cortex (PFCld), lateral ventral prefrontal cortex (PFClv), medial posterior prefrontal 
cortex (PFCmp), and temporal lobe. Default Network A consisted of subregions in the IPL, 
PFCd, medial prefrontal cortex (PFCm), temporal lobe, and PMC. Default Network C consisted 
subregions in the IPL, parahippocampal cortex (PHC), and retrosplenial cortex (Rsp). 
Additionally, we included the hippocampus as a subregion of Default Network C. 
 
Univariate activation for different thought categories 
We performed whole-brain univariate activation analysis to identify regions recruited during 
spontaneous memory recall and future thinking. For each participant, we computed the mean 
activation for each thought category within each cortical parcel from the 400-parcel atlas. This 
was done by first averaging the preprocessed blood oxygenation level-dependent (BOLD) signal 
across all vertices within a parcel and across TRs within each thought unit. We then averaged 
these mean signals across thought units corresponding to each thought category. Next, for each 
parcel, we performed group-level contrasts between the “current state” category and each of the 
other thought categories of interest (i.e., semantic-world, semantic-self, episodic, and future-
oriented) using two-tailed paired-samples t-tests. This resulted in whole-brain t-statistic and p-
statistic maps for each of the four contrasts. We applied Bonferroni's correction to each contrast 
map to account for multiple comparisons across all 400 parcels.  
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 We additionally compared univariate activation across thought categories within the 
PMC and hippocampus ROIs. For each participant and ROI, we computed the mean activation 
for each thought category by averaging the preprocessed BOLD signal across vertices/voxels 
and across TRs within each thought unit, and then averaging across all thought units 
corresponding to each category. For each ROI, we performed a one-way repeated-measures 
ANOVA with the thought category as a within-subject factor to test for statistically significant 
differences in activation across thought categories. For both whole-brain and ROI analyses, the 
time windows corresponding to individual thought units were shifted forward by 4.5 seconds to 
account for the hemodynamic response delay. 
 
Univariate activation at thought boundaries 
We first performed a whole-brain analysis (Fig. 4a) to identify brain regions activated at strong 
thought boundaries, defined as those with boundary agreement scores of 1. For each cortical 
parcel in each participant, we computed the mean activation during strong thought boundary 
periods and non-boundary periods. A strong boundary period was defined as a 6-second 
window starting at the offset of the thought that immediately preceded a strong boundary. A 
non-boundary period was defined as the 6-second window in the middle of thoughts lasting 
longer than 15 seconds. To account for the hemodynamic response delay, both boundary and 
non-boundary time windows were shifted forward by 4.5 seconds. Preprocessed BOLD signals 
were first averaged across all TRs within the boundary/non-boundary periods and then across 
vertices within each parcel. Next, for each parcel, we performed a group-level contrast between 
the strong boundary periods and non-boundary periods using two-tailed paired-samples t-tests. 
The resulting whole-brain t-statistic map was corrected for multiple comparisons across all 400 
parcels using Bonferroni's method. 
 We also examined activation time courses evoked by different types of thought 
boundaries in the PMC and hippocampus ROIs. For each participant and ROI, we averaged TR-
by-TR activation across all vertices/voxels within the ROI. From this activation time series, we 
extracted 27-second (18 TRs) time courses locked to thought boundaries (i.e., from 2 TRs 
before to 15 TRs after the thought offset TR). The time courses were then averaged across 
boundaries within each boundary type: 1) strong thought boundaries with boundary agreement 
scores of 1, 2) boundaries where only the topic of thoughts changed, and 3) boundaries where 
only the category of thoughts changed. For the non-boundary control condition, we additionally 
extracted and averaged time courses locked to the middle of thoughts lasting longer than 15 
seconds (i.e., from 2 TRs before to 15 TRs after the middle TR). Two-tailed paired-samples t-
test were performed to compare activation levels between boundary and non-boundary 
conditions at each time point of the time courses. Bonferroni's correction was applied to correct 
for multiple comparisons across the 18 time points.    
 
Distributed activation pattern at thought boundaries 
We conducted a whole-brain pattern similarity analysis to test if the major mental context 
transition pattern observed in our prior study7 generalized to strong thought boundaries during 
the think-aloud task (Fig. 4c). We first extracted strong thought boundary and non-boundary 
patterns for each cortical parcel in each participant’s brain. A strong thought boundary pattern 
was generated by averaging activation patterns across all TRs within 6-second windows starting 
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from the offset of thoughts immediately preceding strong boundaries with an agreement score of 
1. A non-boundary pattern was generated by averaging activation patterns across all TRs within 
the middle 6 seconds of thoughts lasting longer than 15 seconds. To account for the 
hemodynamic response delay, both boundary and non-boundary time windows were shifted 
forward by 4.5 seconds.  

We next computed Pearson correlations between the think-aloud boundary/non-
boundary patterns and the between-movie boundary pattern obtained from the movie watching 
phase data of our prior fMRI study77. In that study, participant watched a series of ten short (2 – 
8 minutes long) audiovisual movie stimuli, separated by 6-second title scenes. Participants 
subsequently verbally recalled the movies in any order they wanted. We followed the 
procedures described in ref.7 to generate the between-movie boundary pattern for each 
participant. Activation patterns were first averaged across time points within the 15-second 
boundary period following the offset of each movie, shifted forward by 4.5 seconds. The 
patterns were then averaged across movie stimuli and fifteen participants analyzed in the 
dataset to create a single template pattern. To preserve the boundary activation pattern 
reported in the original study as much as possible, we used the dataset preprocessed according 
to the pipeline described in ref.7.  
 To test whether the strong boundary patterns were overall positively correlated with the 
between-movie boundary patterns, we performed group-level two-tailed one-sample t-tests 
against zero on the correlation coefficients for each cortical parcel. Additionally, group-level two-
tailed paired-samples t-tests were performed to directly compare the similarity of the between-
movie boundary patterns to the strong thought boundary patterns versus the non-boundary 
patterns. Bonferroni’s correction was applied to each resulting whole-brain statistical parametric 
map to correct for multiple comparisons across parcels. Finally, to identify parcels showing 
significant effects in both tests after correction, we masked the areas with higher similarity to the 
strong boundary pattern compared to the non-boundary pattern with the areas that showed 
overall positive similarity to the strong boundary pattern. We also performed the same boundary 
pattern similarity analysis within the PMC and auditory cortex ROIs, as was done for individual 
parcels in the whole-brain analysis. 

Finally, we tested whether the strong thought boundary patterns in the PMC and auditory 
ROIs were influenced by temporary silence due to pauses in speech at the boundaries. To do 
this, we compared the think-aloud boundary/non-boundary patterns with the activation pattern 
associated with silence, measured during the movie watching phase of ref.7. Silent periods were 
identified as moments within movies when the audio amplitude, convolved with a hemodynamic 
response function, was as low as the mean amplitude during the title scenes between movies 
where no sound was presented. To prevent potential carryover effects from the between-movie 
boundaries, time points within the first 45 seconds of each movie were excluded from the silent 
periods. Activation patterns were averaged across all time points within the silent periods for 
each participant and then across participants. We performed group-level two-tailed one-sample 
t-tests against zero to test the overall positivity of correlations between the silence template 
pattern and the think-aloud boundary/non-boundary patterns. Additionally, we performed two-
tailed paired-samples t-tests to compare the similarity of the silence template pattern to the 
strong thought boundary versus the non-boundary patterns. 
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Thought network structure 
To quantify the overall structure of think-aloud responses, we transformed each participant’s 
response into a semantic network (Fig. 5a) following the procedures developed in our prior 
study77. In this network, the nodes represented individual thought units, and the edges between 
nodes represented the semantic similarity between thoughts. Semantic similarity between all 
possible pairs of thoughts was measured using the procedures described above in the 
“Semantic similarity between thoughts” section. Specifically, each thought unit was converted 
into a 768-dimensional text embedding vector, and the cosine similarity between these vectors 
was computed. The resulting network was undirected, and edges with weights below zero were 
removed. To measure the global structure of the thought network, we calculated the average 
clustering coefficient across all nodes (Fig. 5b). The clustering coefficient for each node was 
defined as the geometric average of the subgraph edge weights, using the implementation 
provided by the NetworkX Python package (version 3.1; https://networkx.org/). 
 
Functional connectivity analysis  
To examine how interactions between brain regions influence the overall structure of thought 
networks, we computed functional connectivity within and between brain networks involved in 
spontaneous thought generation10,23,52. Specifically, we focused on Control Network B, Default 
Network A, and Default Network C as defined in the 17-network version of the 400-parcel 
cortical atlas35. These networks anatomically overlap with the frontoparietal control network, the 
core default network subsystem, and the medial temporal lobe subsystem of the default network 
discussed in prior studies10,52, respectively.    
 Functional connectivity was computed from the entire think-aloud session for each 
participant. First, we extracted the mean activation time course of each network subregion by 
averaging across all vertices/voxels within each region and hemisphere. For bilateral 
subregions, time courses were also averaged across hemispheres (see Fig. 5d and the “Cortical 
parcellation and region of interest definition” section above for the list of subregions). Next, we 
computed pairwise Pearson correlations between the activation time courses of individual 
subregions. Within-network functional connectivity was then defined as the average of 
correlations between different subregions within the same network. Between-network functional 
connectivity was defined as the average of correlations between all possible pairs of subregions 
across two different networks.  
 Finally, we computed Pearson correlations between the participant-wise average 
thought network clustering coefficients and the within/between-network functional connectivity 
values. As a post-hoc exploration, we also computed correlations between the thought network 
clustering coefficients and the functional connectivity between all individual subregions in the 
three brain networks. Bonferroni’s correction was applied to correct for multiple comparisons 
across all possible pairs of subregions.     
 
Statistical tests 
Details of the statistical tests used in each analysis are provided in the corresponding 
subsection of the Methods section. All statistical tests were two-tailed. For parametric tests 
comparing means across multiple conditions, Mauchly’s test was used to assess sphericity. If 
the assumption of sphericity was violated, the Greenhouse-Geisser corrected p-value was 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 2, 2024. ; https://doi.org/10.1101/2024.10.02.616300doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.02.616300
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

reported in place of the uncorrected p-value. Only participants with complete data for all relevant 
conditions were included in comparisons. Participants with missing data in any condition (e.g., 
those who did not generate thoughts in the current state category when comparing current state 
and episodic recall) were excluded from the relevant comparisons. 
 
DATA AVAILABILITY 
 
The raw fMRI and behavioral data from think-aloud sessions will be made publicly available on 
OpenNeuro.org following the publication of this study. 
 
CODE AVAILABILITY  
 
The analyses in this study were conducted using custom Python scripts and publicly available 
packages. These analysis scripts will be made available upon request to the corresponding 
author (H. L.).   
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